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1. Introduction

In the past decade or so, a number of policies have been promulgated at the federal

and state levels to move the United States (US) economy towards less reliance on fossil

fuels. A number of these policies focus on the transportation sector. At the federal

level, for example, the Renewable Fuel Standard (RFS) mandated that 36 billion gallons

of renewable fuels (per year) be in use by 2022 (U.S. Energy Information Administration,

2013). At the state level, California has adopted the “Low Carbon Fuel Standard” (LCFS),

which required a 10% reduction in the carbon intensity of motor vehicle fuels by 2020.

Both policies are likely to increase reliance on biofuels, both corn- and soybean-based. To

facilitate the goals under the RFS, the US created “Renewable Identification Numbers”

(RINs), which are essentially tradable certificates for producers of inputs into renewable

fuels.

A variety of structural elements in the market for RINs complicate the expansion

needed to meet the growing demand for ethanol associated with the LCFS and the RFS.

These elements include the relative immaturity of the RINs market, the presence of the

“blend wall,”1 the large distances between refiners and major production basins for agri-

cultural products such as corn that are used to create ethanol (LaRiviere et al., 2015); and

diseconomies induced by the competition between fuel and food uses for products such as

corn. In addition, there are concerns about the indirect carbon emissions that would arise

from the requisite conversion of land into domestic corn production in the US (Searchinger

et al., 2008).

An additional consideration is that the market for RINs has been shown to exhibit

significant transitory shocks or jumps, and that RINs prices follow a more complex pro-

1 The blend wall refers to the point at which fuels contain 10% ethanol; it is believed that conventional
internal combustion engines cannot function normally when fuels contain more than 10% ethanol. See
Babcock (2013); Burkholder (2015); Knittel et al. (2017) and Meiselman (2016) for discussion.
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cess than geometric Brownian motion (GBM) (Mason and Wilmot, 2016). As such, the

distribution of the log-returns of RINs prices have substantially fatter tails than does a

Normal distribution. As we discuss below, the presence of fat tails exerts effects qualita-

tively similar to increases in both mean and variance of a GBM stochastic prices, both of

which commonly induce a delay in investment (Dixit and Pindyck, 1993). To the extent

that such capital projects are at least partially asset-specific to renewables, they reflect

a sunk (or partially sunk) up-front cost; fat tails can delay investment in the presence

of partially or fully irreversible investments (Martzoukos and Trigeorgis, 2002).2 These

effects are also consistent with behavior by risk averse decision-makers, in that the ob-

jective function governing investment decisions under uncertainty is commonly concave.

In such a framework, a change that increases the expected utility of delaying investment

will make that action more attractive; as we discuss below, this sort of effect arises when

the stochastic variable of interest is influenced by a jump process. In addition, changes

to the stochastic environment that mimic inclusion of a mean-preserving spread, as when

one allows for fat tails (either via jumps or time-varying volatility) lowers the appeal of

actions tied to the variable, thereby requiring an increase in expected payoff to induce

activity. Either way, the presence of fat tails seems likely to delay investment.

One resolution of these difficulties would be to shift refiners’ reliance from corn

products as inputs in the ethanol production process to soybeans.3 Accordingly, to achieve

the ambitious goals of the LCFS, it seems highly likely that California refiners will have

to accommodate significant increases in ethanol produced from soybeans. Most likely,

this will in turn require large inflows of soybeans and ethanol imported from Brazil. As

2 This aspect, combined with the significant infrastructure that will have to be deployed to fully
capitalize on the potential role of soybeans, raises questions regarding fatness of tails in soybean price
returns as well.

3 For example, the penalty assessed by California Air Resources Board on corn produced in the US
implies that ethanol produced from Brazilian crops is less carbon-intensive than is ethanol produced from
US corn. Likewise, using a life-cycle (well-to-wheel) analysis, Zhang et al. (2010) present results that suggest
Brazilian ethanol could result in 18-33% lower emissions than US based corn ethanol.
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Figure ?? illustrates, Brazil and the US have been the two largest sources of soybean

globally for some time. But while Brazilian production has steadily expanded during this

period, US production stagnated during the past decade. Figure ?? shows this pattern. The

combined implication is that Brazil will likely play an ever-expanding role, particularly

as an input into the production of biofuels. Indeed, Morrison and Chen (2011) argue that

Brazilian ethanol could account for 25% of all transportation energy in California in the

coming years.

Our goal in this paper is to analyze price returns for soybeans, from both Brazil

and the US, so as to determine the empirical importance of elements that might contribute

to fat tails. As the two largest sources of soybean production in the world, any shifts in

information regarding production and yield within Brazil or the US are likely to exert

important effects on global soybean markets. Moreover, any changes in expectations re-

garding soybean exports from competing nations, like China, can swiftly reverberate onto

soybean prices, with fluctuations influenced by changes in export volumes from major

producers; the potential for such a market environment to lead to jumps in prices has

been recognized for some time (Koekebakker and Lien, 2004). Dramatic weather phe-

nomena, such as hot and dry conditions in critical growing regions, could be a significant

contributors to market dynamics, prompting revisions in crop estimates and production

forecasts (Braun, 2024). To allow for such possibilities, we first describe an extension of the

familiar model of a stochastic process that allows for unexpected changes, or jumps. This

extension leads naturally to an econometric specification, which can be readily combined

with time-varying volatility (also known as the generalized autoregressive conditional

heteroscedasticity, or GARCH, framework). After incorporating these elements, we char-

acterize the likelihood function that governs the data-generating process; this, in turn,

leads directly to an estimation procedure and hypotheses tests regarding the appropriate

specification of the stochastic process. We then apply this econometric methodology to
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times series for Brazilian spot prices for soybeans. Related to this time series are ethanol

prices in Brazil, as this fuel is largely dependent upon Brazilian soybeans. Our data

are based on daily observations, for both spot prices. We compare four stochastic data-

generating processes: GBM (which we refer to as PD in the pursuant discussion), GBM

allowing for a jump diffusion process (which we refer to as JD in the pursuant discussion),

GBM allowing for GARCH (which we refer to as GPD in the pursuant discussion), and

GBM allowing for both GARCH and a jump diffusion process (which we refer to as GJD

in the pursuant discussion). Our findings generally point to the statistical importance of

allowing for both GARCH and jumps, for both spot prices.

The consequences of increased reliance on soybeans, particularly production in

Brazil, is that such increased production could be associated with deforestation. This raises

important concerns related to the potential impact on land allocation. Indeed, there is a

historical pattern of deforestation in Brazil – particularly in the Amazon basin – related to

increased soy production.4 Potentially working in the other direction, the potential for fat

tails in Brazilian soybean prices might serve to deter large-scale investment in production

processes that utilize Brazilian soy inputs. Related to this element, deforestation is an

example of significant up-front and largely irreversible costs; we argue below that the

presence of fat tails, say due to jumps, can increase the option value of waiting to undertake

such investment, particularly when the up-front costs are significant. Policy interventions

that serve to raise these costs might thereby benefit from the presence of jumps. As

both GARCH and jumps will induce fat tails, our empirical results may have important

4 See Gasparri et al. (2013); Gollnow et al. (2018). Much of this past pattern of behavior was related
to the use of soy as a feedstock for the production of beef; these concerns lead to the promulgation of a
voluntary agreement, known as the “Soy Moratorium,” to reduce impacts on forests. Under this agreement,
soy producers pledged to produce without contributing to deforestation. The original agreement had a
finite life; negotiations to extend the agreement extended the terms indefinitely. While there is evidence that
the agreement initially lead to a sharp reduction in deforestation (Kastens et al., 2017), there is some concern
that deforestation rates have been increasing over the past decade. For example, Gollnow et al. (2018, p.
377) noted in 2018 that deforestation rates in Brazil increased after 2013, a pattern that World Resources
Institute (2022) recently corroborated.
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implications for motives to undertake large-scale investments such as import facilities

where these products could be offloaded, facilities that would convert soybeans into

ethanol once they have reached American shores, and refinery adaptations that are likely

to be required so as to accommodate these new fuel sources.

2. Econometric Framework

In order to develop the maximum likelihood framework used to estimate the

parameters of the different models, we begin with a brief examination of the stochastic

processes under investigation. Let Pt denote price at time t; its time path is said to follow

a geometric Brownian motion (GBM) process with trend α and variance parameter σ if5

dPt = αPtdt+σPtdz. (1)

In equation (1), dz represents an increment of a Wiener process dz = ξt
√

dt, where ξt has

zero mean and a standard deviation equal to 1 (Dixit and Pindyck, 1993). Denote the log

returns, i.e., the natural logarithm of the ratio of price in period t to the price in period

t−1, by xt ≡ln(Pt/Pt−1). If Pt follows a GBM process then xt is normally distributed with

variance σ2 and mean µ ≡ α−σ2/2. This gives the pure diffusion (PD) model

xt = µ+σzt. (2)

The term zt in equation (2) is an identically and independently distributed (i.i.d.) random

variable with mean zero and variance one.

We introduce jumps into the model in the style of Merton (1976), by assuming

that two types of changes affect the log returns. The first type are ‘normal’ fluctuations,

5 Engel et al. (2015) use a similar approach to model soybean returns when studying how uncertainty
in alternative land-use returns influences the decision of whether or not to deforest.
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represented through the geometric Brownian motion process. The second type, ‘abnormal’

shocks, are modeled through a discontinuous process. These abnormal shocks can be

thought of as occurring via the arrival of new information (Elder et al., 2013). We view

these shocks as transitory, as opposed to quasi-permanent changes in the fundamental

underlying structure of the market. This assumption makes it more natural to include a

jump process, as opposed to a regime shifting framework. We assume the discontinuities

are described by a Poisson distribution governing the number of discrete-valued events,

nt ∈ {0,1,2, ...}, that occur over the interval (t−1, t); accordingly, the probability that j jumps

are observed during this interval equals

P
(
Nt = j

)
=

exp(−λ)λ j

j!
. (3)

A key element in equation (3) is λ, which can be interpreted as the probability of observing

a jump in any brief time interval of length dt. Thus, the arrival of jumps is a Poisson

distribution,6 from which we can describe the change in the number of jumps observed

by

dnt =

 0 with probability 1−λdt

1 with probability λdt
(4)

As in Askari and Krichene (2008), when abnormal information arrives at time t, prices

jump from Pt− (the limit as the time index tends towards t from left) to Pt = exp(Jt)Pt−;

accordingly, Jt measures the percentage change in price. The resultant stochastic process

6 One could of course use alternative specifications of the jump process, including Bernouilli or Levy.
Our choice is motivated by the ability to combine the Poisson process – along with a GARCH process
– into the basic PD econometric model. One advantage of our approach is that it leads to a relatively
straightforward extension of the analytics associated with evaluating optimal investment; for example,
Dixit and Pindyck (1993, p. 171) show that including a Poisson process into a conventional Brownian
motion framework adds only one (non-linear) term to the key equation that defines the optimal value
function associated with investing. Note too that we do not specify jump events ex ante, but rather let the
econometric results pick out the key parameters. An alternative would be to use some criterion to decide
when a jump has occurred, as in Chevallier and Sévi (2014).
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for the random variable Pt may then be written as

dPt

Pt
= αdt+σdzt+

(
exp(Jt)−1

)
dnt, (5)

where dzt has the same properties assumed in equation (1) and dnt is the independent

Poisson process described in equation (4). Together the terms dzt and dnt make up the

instantaneous component of the unanticipated return. It is natural to assume these terms

are independent, since the first component reflects ordinary movements in price while the

second component reflects unusual changes in price. The size of the jump, Yt,k, is itself a

random variable; we assume it is normally distributed with mean θ and variance δ2, and

that it is independent of the distribution for the arrival of a jump. The jump component

affecting returns between time t and time t+1 is then

Jt =

nt∑
k=0

Yt,k. (6)

Thus, the mixed jump-diffusion (JD) process for the log-price returns can be described by

xt = µ+σzt+ Jt. (7)

An alternative explanation for the “fat tails” that are often observed in commodity

price data is that Pt is subject to time-varying volatility. An example of such a phenomenon

is the “generalized autoregressive conditional heteroskedastic” (GARCH) framework.

Adapting the pure diffusion model to allow for this form of time-varying volatility gives
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the GARCH – diffusion (GPD) process:7

xt = µ+
√

htzt, (8)

where the conditional variance, ht is described by the process

ht ≡ Et−1

(
σ2

)
= κ+α1

(
xt−1−µ

)2+β1ht−1. (9)

Note that when ht = σ2 the GARCH diffusion model reduces to pure diffusion model. On

the other hand, when κ > 0 and α1+β1 < 1, the unconditional variance of the volatility of

the process exists and equals κ
1−α1−β1

.

Allowing for jump discontinuities would result in the GARCH(1,1) jump-diffusion

(GJD) process:

xt = µ+
√

htzt+ Jt, (10)

where ht is described by equation (9). Duan (1997) shows that the diffusion limit of a large

class of GARCH(1,1) models contain many diffusion processes allowing the approximation

of stochastic volatility models by the GARCH process.

We evaluate the four models using maximum likelihood estimation methods.8 To

this end, we note that the parameters of our four candidate models – PD, JD, GPD, GJD –

may be nested into the general log-likelihood function

L
(
ϕ,xt

)
= −Tλ−

T
2

ln(2π)+
T∑

t=1

ln

 ∞∑
n=0

λn

n!
1√

ht+nδ2
exp

(
−
(
xt−µ−nθ

)
2
(
ht+nδ2) ) , (11)

7 The process described in equations (8)–(9) is characterized by four parameters, µ,κ,α1 and β1. There
is a general consensus in the literature is that a GARCH model with a limited number of terms performs
reasonably well, and so we restrict our focus to this more parsimonious representation.

8 Maximum likelihood estimates are known to be consistent with asymptotically normal distributions
of the parameters.
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where n indexes the number of jumps, combined with the description of ht given in equa-

tion (9).9 In this framework, the GPD model corresponds to the parameter restriction

λ = θ = δ = 0; the JD model corresponds to the restriction α1 = β1 = 0; and the PD model

corresponds to the restriction α1 = β1 = λ = θ = δ = 0. Comparing any pair of potential

models can thus be framed as a test of an appropriate parameter restriction. For example,

the comparison of the PD and GPD models is conducted by testing the parameter restric-

tion α1 = β1 = 0; the comparison of the PD and JD models is conducted by testing the

parameter restriction λ = θ = δ = 0. The empirical validity of the parameter restriction of

interest can be evaluated by use of the likelihood ratio test (Johnston and DiNardo, 1997).

This approach compares the likelihood function under a particular restriction, L(ϕR;x),

to that of the unrestricted or less restricted likelihood function, L
(
ϕ̂;x

)
. Under the null

hypothesis that the restriction is empirically valid, the decrease in the likelihood function

associated with the restriction will be small. Such an approach can be used to make

pairwise-comparisons between a more general model and a more restricted model. The

test statistic is the log-likelihood ratio

LR = 2[L(ϕ̂;x)−L(ϕR;x)];

under the null hypothesis this statistic will be distributed as a Chi-square random variable

with m degrees of freedom, where m is the number of parameter restrictions.

3. Data and data properties

The discussion in the Introduction motivates us to evaluate soybean and ethanol

prices in Brazil; because the former might be thought of as a substitute to American corn

(as an input into ethanol production), we also evaluate US corn prices. The data for this

9 In the empirical results we report below, the number of jumps was truncated at 10 (Ball and Torous,
1985).
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study consist of the daily closing prices of Brazilian soybeans and ethanol, and US corn.

Both Brazilian soybean prices and ethanol prices were obtained from the Centro de

Estudos Avancadoes em Economia Aplicada (CEPEA). CEPEA Brazilian soybean prices

are reported as daily present cash values, converted into US dollars; these reflect the value

of current soybean trades or bids reported by CEPEA collaborators, per 60-kilo bag, for

soybean delivered at the unit that loads ships at Paranaguá port, in Paraná State. Brazilian

fuel ethanol prices are reported as daily present cash value equivalents in US dollars per

cubic meter. Both these prices are retrieved from the CEPEA website.10 US corn prices

were obtained from Bloomberg, and represent the front month corn futures prices based

on the 5,000-bushel contract traded on the CME.

Summary statistics, including the first four moments (mean, variance, skewness

and kurtosis) for daily prices and log returns of each of the time series are given in Table 1.

The price returns are calculated as

rt = 100[ln(Pt/Pt−1)].

In Figures 4(a)–4(c), we plot the price returns for the three time series. Brazilian soybean re-

turns are shown in Figure 4(a), corn returns are shown in Figure 4(b) and Brazilian ethanol

returns are shown in Figure 4(c). The soybean series displays much lower variation, rela-

tive to the corn and ethanol series. Each series also displays evidence of asymmetry in the

distribution, as displayed by the presence of skewness, as well as evidence of leptokurtosis

or “fat-tails,” as evidenced by the large value for kurtosis. The Anderson – Darling test,

a quadratic empirical distribution function test, is used to examine the normality of the

data. The results of the test imply the null hypothesis of a normally distributed random

10 The data are available at CEPEA soja and ethanol websites. We discuss the process used to construct
the Brazilian soybean and ethanol data series in greater detail in the Appendix.
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variable is strongly rejected for each of our time series.

These results are corroborated by the “quantile–quantile” (QQ) plots, which we

present in Figures 5. Figure 5(a) shows the natural log of soybean returns, Figure 5(b)

shows the natural log of corn returns and Figure 5(c) shows the natural log of ethanol

returns. If soybean prices follow a geometric Brownian motion process, then the soybean

prices would be log-normally distributed (i.e., the natural log of the soybean returns would

be Normally distributed). A QQ plot compares the values observed in the empirical distri-

bution (measured on the y-axis) against the values from the inverse of a theoretical normal

distribution whose mean and standard deviation correspond to the values associated with

the empirical distribution (measured on the x-axis). If the empirical distribution of the

natural log of soybean returns is close to a normal distribution, the QQ plot will be well

described by a straight line. Alternatively, if there are significant departures from a linear

relation, then the natural log of the soybean returns is not well-described by a normal

distribution, arguing against the empirical validity of the geometric Brownian motion

specification. Here, we see consistent departures from a linear relation, particularly in the

tails. These departures indicate significant leptokurtosis, i.e., fat tails.

4. Econometric Results

4.1. Main Results

The results of the maximum likelihood estimate of the four stochastic processes

(PD, JD, GPD, GJD) for each of the commodities are presented in Table 2. Incorporating a

jump component into the model (JD) noticeably reduces the instantaneous rate of variance,

σ, across all three commodities (soybeans, ethanol and corn). Such reductions are offset

by the large and significant value of the variance of the jumps, δ. The intensity of the

jump process, λ, is significant across the three commodities. The estimated values for λ

suggest that jumps occur, on average, quite frequently (once every 8 days) in the soybean
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markets, but much less frequently (once every 20 days) in the ethanol market.11 Though

insignificant, the mean jump size, θ, suggests that soybeans returns tend to experience

negative jumps. This is in contrast to the corn and ethanol markets, where a positive

(though insignificant) θ indicates that the market tends to experience positive shocks on

average.

The GARCH(1,1) model (GPD) provides variance parameter estimates that are

significant and indicate a high degree of persistence (α̂+ β̂ is close to 1), a common feature

of financial time series. The value of β̂ suggests the effect of changes in volatility on

future volatility will persist for a longer period of time, as the rate of decay is slower. In

the mixed jump-diffusion model (GJD), the jump intensity λ remains significant though

smaller in magnitude than in the JD model. This indicates that the GJD model predicts less

frequent jumps relative to the JD model. Even so, while allowing for GARCH evidently

captures some of the estimated effect of the jump in the JD model it does not render jumps

irrelevant. Furthermore, the estimated frequency of jumps is economically meaningful:

The results of the JD model suggests a jump occurs on average approximately once every

3 days for soybeans and corn and once every 4 days for ethanol; the GJD suggests a jump

occurs on average approximately once every 6 days for soybeans, and every 10 days for

corn and ethanol.

The results of the pairwise Likelihood ratio (LR) tests are presented in Table 3. Each

entry in the Table is a test statistic of a hypothesis X vs. Y, where the null hypothesis is that

X is the appropriate stochastic process describing the data and the alternative hypothesis

is that Y is the appropriate stochastic process describing the data. The parenthetical values

below each test statistic give the associated p-value. For all three price returns, the results

11 The expected arrival time for a jump is the inverse of the jump intensity, i.e. 1/λ. Thus, the expected
arrival times are approximately 8 (= 1/.124) days for soybeans and 20 (= 1/.051) days for ethanol; the expected
arrival time for corn markets, 10 (= 1/.103) lies in between these values.
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displayed in column two show that allowing for jumps yields a statistically important

increase in predictive power, relative to the pure-diffusion model, for each price return

series. Likewise, the results displayed in column three indicate that allowing for time-

varying volatility improves model fit, relative to the pure-diffusion model. The results in

the final two columns indicate that allowing for both jumps and time-varying volatility

improves model performance. The results in column four indicate that incorporating

time-varying volatility into a model that allows for jumps yields a statistically important

improvement in model fit, for each commodity. Similarly, the results in column five

show that incorporating jumps into a model that allows for time-varying volatility yields

a statistically important improvement in model fit – again, for each commodity. The

take-away message is that in every case, and for each of the three commodities, the

more elaborate model is preferred to the less elaborate model. These conclusions hold

with considerable confidence: the chance that the null hypothesis (of the simpler model)

holding true is less than 1% in every case. As such, the test results point to a statistically

important gain in predictive power associated with allowing for both jumps and time-

varying volatility.

4.2. Extensions

We conclude this section by providing material related to a potential break. In

December 2013, the U.S. Environmental Protection Agency (EPA) proposed new rules for

biofuels; this lead to promulgation of several new initiatives in the US Congress. There is

some indication that this heightened legislative activity triggered increased potential for

jumps (Mason and Wilmot, 2016). Indeed, Lade et al. (2018, p. 708) argue that the 2014

proposed rule exerted important effects on corn and soybean price returns and impacted

advanced biofuel and biodiesel producers. These are sources of production that might

well have been viewed as of potentially increasing importance. The adverse impact from

the proposed adjustments to the RFS could potentially have connoted a structural break
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in the three time series.12

We explore the potential impact on the appropriate characterization of the stochastic

process for these price returns in this subsection. Anticipating the potential lag between

the legislative activity and market response, we allow for a structural break in the middle

of 2014. To this end we split the data into two subsamples: the period up to June 2014

and the period after July 2014. We then repeat the analysis documented in subsection 4.1

for each of these sub-samples. We report results for the period through June 2014 in

Table 4, while results for the period from July 2014 onward are presented in Table 5. All

these results are qualitatively similar to those in Table 2; in particular, there is substantial

evidence for importance of jumps both before and after break, with the combined GJD

model providing multiple statistically important variables. In light of that result, it is

perhaps not surprising that the GJD model statistically outperforms the other models.13

Comparing the GJD estimates in the two tables, we see that the estimated jump probability

decreases for soybeans but is largely unchanged for corn and ethanol.

5. The influence of jumps on investment under uncertainty

In this section, we investigate the potential impact of including jumps in the stochas-

tic specification of the price for a key commodity. To illustrate the basic ideas, we start

with a conventional investment under uncertainty problem, under which the key under-

lying stochastic process is geometric Brownian motion (Dixit and Pindyck, 1993). In the

present application this underlying variable would be the price of a commodity input,

such as soybeans or corn, or the price of an intermediate good such as ethanol. The invest-

ment problem involves a one-time sunk expenditure K; making this expenditure allows

12 Formal analysis of the times series via the Zivot-Andrews Unit Root Test (allowing for a structural
break) identifies the structural break date for Brazilian soybeans as 30 June, 2014, and the structural break
date for US corn as 12 July 2013. In light of this evidence, and the information in the above paragraph, we
use a break date of June 2014 in the following analysis.

13 Results available upon request.
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the decision-maker to obtain a new payoff flow. The investment could reflect expanding

refinery capacity to process increased inflows of ethanol, building a dedicated factory for

biofuels or undertaking a large-scale change in land use via deforestation. A key question

here regards timing: when should the investment be taken? Answering this question

requires a determination of the value associated with forestalling the investment – the

“option value of waiting” – together with a determination of the value of investment.

We assume that the benefits associated with investing at a certain time t are propor-

tional to the price of the key resource at that time.14 This implies the benefits associated

with investing at time t can be expressed by a stochastically evolving component, which

we write as Xt. Letting K denote the one-time investing cost, the net benefits of acting

(investing) at t are equal to15

X−K.

These net benefits are compared against the value associated with the option value

of waiting. Delaying investment can be beneficial, since the return from the investment

is linked to the stochastic value X. At any time, there is a chance that X will evolve

downwards, rendering the investment uneconomic; accordingly, choosing to invest at

the precise moment when anticipated net benefits first become positive is ill-advised.

By delaying, the decision-maker reduces the chance that s/he will regret making the

investment; the increase in value associated with waiting to build at the optimal time in

the future is the option value associated with waiting.

The option value is functionally related to the stochastically evolving component

14 This implicitly assumes the quantity delivered is fixed, i.e. supply is perfectly inelastic. More generally,
an upward-sloping supply curve would induce quantity as a function of price. Adapting the model to allow
for such a structure is feasible, but at the cost of considerable extra complexity (Dixit and Pindyck, 1993, pp.
195-199).

15 In the pursuant discussion, we will often suppress the time subscript so as to reduce notational clutter.
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through the optimal value function F(X). We start by working through the problem

when X follows a geometric Brownian motion (GBM) process. Later, we discuss the

determination of F(X) when X is also subject to the potential for jumps.16

Under GBM, one can express the stochastic evolution of X as in eq. (1). At any

moment where the decision to undertake the investment has yet to be made there are

two possible decisions: either build now or wait. The decision to build now yields the

immediate payoff X−K (as noted above). The decision to wait earns a flow payoff of zero

(since nothing has been done), while the option value, F(X), is retained; delay will deliver

anticipated change in F(X) (which can be thought of as the anticipated capital gains) less

the foregone capitalized option value (which can be thought of as the interest earned on

the net returns). If delaying is optimal, the fundamental equation of optimality requires

that these two effects balance out (Dixit and Pindyck, 1993), so that the optimal value

function must satisfy:

ρF(X) =
1
dt

E
[
d(F)

]
, (12)

where ρ is the decision maker’s discount rate and the expression on the right-hand side

is the so-called Itô operator. The left-hand side of eq. (12) measures the capitalized option

value, while the right-hand side is the anticipated capital gains. This component can be

expressed as (Dixit and Pindyck, 1993):

1
dt

E
[
d(F)

]
= αXF′(X)+

σ2

2
X2F′′(X). (13)

16 One aspect of the GBM process is that changes tend to exert an effect for a considerable length
of time. An alternative approach would be to use a model in which the effect of changes in X tend to
dissipate relatively more rapidly – for example, a mean-reverting process. Analysis such a process is more
complicated, though the broad principles we describe in this section still apply (Dixit and Pindyck, 1993).
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It can then be shown that the solution eq. (12) is a power function:

F(X) = aXb, (14)

where the parameter β > 1 is the positive solution to the quadratic expression

Q(b) =
σ2

2
b(b−1)+αb−ρ = 0. (15)

It is easy to see that b depends positively on σ and negatively on α.17

The value function F(X) can be interpreted as the value of an option to invest in

the future Dixit and Pindyck (1993). Accordingly, it is optimal to invest when this value

equals the net benefit from acting now; this implies a cutoff value X∗ for the underlying

stochastic ingredient, which is implicitly defined by the “value-matching” condition

F(X∗) = X∗−K (16)

along with the “smooth-pasting” condition

F ′(X∗) = d(X∗−K)/dX∗ = 1. (17)

Applying the value-matching and smooth-pasting conditions to the functional form in

17 It is easy to see that Q is convex, with Q(0) < 0. It follows that one of the two roots is negative;
the boundary condition that requires the value F to tend to zero as X becomes small then forces the scale
coefficient on the term with the negative root to be zero, thereby picking out the positive root in eq. (15).
The requirement that α < ρ then forces the positive root to exceed 1. Larger values of α shiftQ up, rendering
a smaller value of the positive root, while larger values of σ shift Q down, rendering a larger value of the
positive root.
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eq. (14), it is easy to show that the cutoff value is:

X∗ =
bK

b−1
. (18)

As noted above, b is increasing in σ and decreasing in α; it follows that X∗ is also is

increasing in σ and decreasing in α.

Since investment is delayed until X rises to this cutoff value, investment will tend to

be undertaken sooner the larger is α or the smaller is σ. These features can be characterized

in terms of the option value. Because a larger option value raises the benefits from delay,

it will tend to push back in time the moment at which the decision to invest is taken.

Intuitively, an increase in the variance of the stochastic process raises the option value

because of the potential for a more dramatic future increase in the underlying value X;

delaying investment allows the decision maker to strategically take advantage of such

future movements. This effect is more important the larger is the initial investment K.

An alternative way to think about this problem emerges from consideration of the

concavity in the value function F(X). This concavity evokes the concept of risk aversion,

which in turn connects to analyses of decision-making that are based on the expected utility

representation in the presence of key stochastic components. Elements that increase the

expected utility of a particular action, such as delaying investment, will make that action

more attractive. That would be the case with an increase in the drift term of the stochastic

variable X, i.e. α; or decreases in the riskiness of that variable, i.e. decreases in σ. It is also

true that adjusting the stochastic variable via a mean-preserving spread lowers the appeal

of actions tied to the variable, thereby requiring an increase in expected payoff to induce

activity. We return to this point below.

Now suppose the value X evolves according to the mixed jump-diffusion process.

Here, we assume changes in X are composed of two types of changes: ‘typical’ fluctuations,
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represented through the GBM process, and ‘abnormal’ fluctuations, due to the arrival

of new information or some unusual event. We model the arrival of these abnormal

fluctuations as following a Poisson process, which we denote by J.18 The probability

a jump will occur during a brief time interval of length dt is then λdt, where λ > 0

is a parameter measuring the arrival frequency. Should a jump occur, we assume it

generates a value Y that we interpret as creating a proportional change to X; this proportion

is independently and identically distributed as a lognormal random variable – so that

ln(Y) is Normally distributed. We denote the mean and variance of ln(Y) by θ and δ2,

repsectively. Recalling the characterization of a GBM process from eq. (5), we may describe

the combined jump - GBM process by

dXt = αXtdt+σXtdzt+YXtdJt. (19)

Including jumps in this manner changes the drift term in the expressions for the evolution

of X to α+λθ; an important related point is that incorporating jumps will increase the

variability of X over time.19

If a jump occurs it make move the price directly into that region where investment

is undertaken, or it may leave price in the continuation region. In the latter event the

function characterizing the continuation value is still given by eq. (12), but now the term

18 Some authors model price jumps using a Lévy process, an approach that requires an ex ante definition
of a jump. For example, Benth et al. (2008) define a jump as an observation that falls outside of 2 standard
deviations from the mean. As we noted above, a number of other authors assume jumps follow a Poisson
process.

19 See Dixit and Pindyck (1993) for discussion. Another explanation for “fat tails” often observed
for many energy commodities is that those prices are subject to time-varying volatility. An example of
such a phenomenon is the “generalized autoregressive conditional heteroskedastic” (GARCH) framework.
Adapting the pure diffusion model to allow for this form of time-varying volatility gives a GARCH –
diffusion process, under which the component σ in eq. (1) is replaced by a time-varying component ht, as in
eq. (9).
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on the right-hand side is impacted by the jump component:

1
dt

E
[
d(F)

]
= αXF′(X)+

σ2

2
X2F′′(X)−λF(X)+λEY

[
F
(
YX

)]
(20)

where the expectation in the final term on the right-hand side is take with respect to the

random variable Y. The solution to the differential equation describing the continuation

value remains a power function, where the exponent β in this function is now the solution

to the equation (Dixit and Pindyck, 1993)

0 = Q̃(β) =
σ2

2
β(β−1)+αβ− r+λ

(
EY

[
Yβ

]
−1

)
(21)

=
σ2

2
β(β−1)+αβ− r+λ

(
eβ
(
θ+ δ

2
2

)
−1

)
. (22)

The solution for βmust be obtained numerically, though it is clear that this value is smaller

than the solution to eq. (15); this implies that the problem that includes jumps renders a

more concave continuation value function, and therefore increases the cutoff value of X

at which investment will occur.

Because a positive value of λθ will raise the drift term, it will induce a delay in

investment. That is, when the jump component is on average positive, a greater arrival

frequency should be associated with delayed investment. In addition, interpreting fat tails

as comparable to a mean-preserving spread, and bearing in mind the analogy we drew

above to decision-making by a risk-averse individual, we anticipate that anything which

renders “fatter” tails – be that in increase in the variance of the value taken by a jump,

should it occur, or anything that increases the magnitude of the GARCH component

ht, seems likely to motivate increased delay in investment. We provide corroborating

evidence of these conjectures in the simulation analysis, discussed below.

In this setting, the solution is determined by the interaction between jump size,
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Y, and continuation value, V. Unlike the GBM variant, however, this problem cannot

be solved analytically. Accordingly, we employ numerical simulations in the pursuant

discussion. To facilitate numerical simulations, we must first specify the discount rate ρ;

the mean α and standard deviation σ of the GBM formulation; and the jump intensity λ

associated with the Poisson process. In our baseline simulations, we set these parameters

as ρ = 0.02,α = 0.04,σ = 0.2, and λ = 0.10. The distribution governing Y, the magnitude of

a jump (should it occur), is assumed to be lognormal – i.e., ln(Y) is Normally distributed

– with mean θ = 0 and standard deviation δ = 1.

For a given parameterization, we solve for the critical value associated with invest-

ing; the interpretation is that when the expected value from investing meets or exceeds

this critical value, the investment will be taken. This critical value will correspond to the

sum of the investment cost itself and the option value of waiting. We then present the

relation between this critical investment value and the requisite level of investment, at

various levels of three key parameters: the jump intensity λ, the mean jump size, θ, and

the standar deviation in the jump size, δ.

Our first set of simulations investigates the role played by the jump intensity, λ.

As we noted above an increase in λ increases the drift term and raises the variance of the

stochastic process, each of which should in principle incentivize a delay in investment. In

this set of simulations we vary λ between 0 (which corresponds to geometric Brownian

motino, GBM) and 0.2, by increments of 0.1; results from this set of simulations are

summarized in Figure 6. The critical investment value under GBM is described by the

solid curve, while the cutoff investment values for λ = .1 are represented by the dashed

curve and the cutoff investment values when λ= .2 is given by the long-dashed curve. The

first feature we observe is that for both positive values of λ, the critical investment value

exceeds that level under GBM, as we conjectured above. The second feature we observe

is that the gap between the critical investment value for positive λ and GBM increases
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as the amount of money that must be invested increases. This is intuitive: because

larger investments require risking more money, the decision-maker is more cautious

about undertaking the investment. Finally, we observe that the cutoff investment value is

larger for λ= .2 than for λ= .1. The impication is that the tendency to delay the investment

becomes more pronounced as the probability of a jump increases: while less sensitive to

λ when the required investment is small, the option value of waiting does respond to

increased jump intensity at larger investment levels.

In the second set of simulations, we identify the cutoff investment for three values

of θ (the expected value of the natural log of the jump size): 0, -0.1 and 0.1. In this way

we consider cases where abrupt movements in prices are negative on average as well as

cases where jumps are positive on average. The results from this simulation are presented

in Figure 7. Here we observe that increases in θ are associated with increases in the cutoff

value, for a given required level of investment. As we noted above, an increase in θ will

raise the drift in the stochastic process (so long as λ > 0), and so the results embodied in

this figure confirm the intuitions we developed above.

The third set of simulations we consider varies δ, the standard deviation of the

jump size; here we consider values equaling 1 plus or minus .25 (i.e., .75 and 1.25). Results

from these simulations are presented in Figure 8. As we noted above, raising the variance

of the jump size pushes up the variance of the stochastic variable X, which reduces the

appeal of the investment for any particular expected gain that obtains at the moment of

investment. In turn, this motivates the agent to delay investment until the anticipated gain

is larger – which is associated with a larger triggering value associated with the activity.

In this way we expect the critical investment value to increase with δ, as Figure 8confirms.

We also expect that the cutoff level will exceed that which arises under GBM, because of

the heightened uncertainty. This too is confirmed by the figure. Moreover, heightened

variation in the potential size of the jump playa an ever-larger role as the amount of
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money that must be invested increases. Again, this seems intuitive: when prices are

subject to possible jumps with particularly large variation, the impact on the value of

waiting increases to an ever-larger degree – generating an increasing motive to delay.

That is, greater variation in jump sizes make waiting more attractive, and hence raise the

option value at the optimal investment time.

6. Conclusion

Our goal in this paper is to re-examine the assumption that the relative price returns

of key energy prices, such as those for commodities related to biofuels, can be modeled

using a continuous time process. In particular, a key goal was the development of a

more accurate understanding of the stochastic forces driving these spot prices. We draw

several important conclusions from our analysis. For all three prices under consideration

– soybeans, corn and ethanol – the data strongly suggest that allowing for jumps or

time-varying volatility in natural gas price returns generates improved fit, relative to

the pure diffusion model. Moreover, combining a process that allows for jumps with a

GARCH process (GJD) outperforms all alternative stochastic processes. Thus, our results

indicate that incorporating both time-varying volatility and jumps into empirical models

of these spot prices improves predictive power; the sharper predictions that result from

this improvement should be of clear benefit to market traders.

There are many reasons why a better understanding of the stochastic process driv-

ing soybean and ethanol prices would be useful. These energy resources can have im-

portant microeconomic effects, with commodity price risk having a potentially significant

impact on profits in a variety of lines of business. Knowledge of the underlying stochastic

behavior of these assets could aid in forecasting spot prices, with attendant reductions in

risk exposure. Moreover, decisions to invest in important infrastructure can be improved

by an enhanced understanding of the stochastic processes driving the prices of related
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resource. For example, the accuracy of a decision to significantly expand a refinery to

handle ethanol infrastructure, or to process imported soybeans, will almost surely be im-

proved by such enhanced understanding.20 This is particularly true when the prices of

imported soybeans or ethanol are subject to infrequent jumps, as our results indicate. For

in this case, the underlying distributions of these prices are “fat-tailed” or leptokurtotic,

and fat tails can be particularly important if prices exert a non-linear marginal impact on

the agent’s profit flow (Weitzman, 2009).

On the other hand, fat tails in soybean prices can increase the option value of

delaying the conversion of a plot of land, so as to facilitate expanded soybean production.

This effect could amplify the impact of policies designed to inhibit deforestation, such as

requiring the purchase of a permit prior to clearing a forest, or some form of punishment

(such as a substantial fine or jail time) for undertaking such land conversion without prior

government approval.

The potential for jumps in soybean and ethanol prices is of more than academic

interest, as jumps in these prices have implications for investment in biofuel capacity

and in the requisite infrastructure needed to accommodate a meaningful increase in the

use of vehicles than can capitalize on expanded ethanol supplies (i.e., E85 vehicles).21 To

the extent that there are jumps in these prices, biofuels producers with excess capacity

might be able to cash in on unexpectedly high price returns. But as our simulation results

showed, it is also true that jumps in the underlying commodity price induce an option

20 This observation is independent of any qualitative assessment of the social desirability of using
soybean as as feedstock for the production of biofuels. Fargione et al. (2008) argue that Brazilian soybean
based ethanol is not socially desirable if its production is facilitated by clearing Amazonian rainforest.
The case for Brazilian ethanol is far more compelling if its production is facilitated by converting Cerrado
(grasslands).

21 Babcock (2013) argues that more stringent future RFS standards will require new investment in
E85 infrastructure, and “[w]hen the [RFS] mandate is set at a level that is not easily met with existing
infrastructure, then the incentive to invest in infrastructure is large.” As we noted, this incentive is reduced
when there is value to waiting to build, as when RINs prices are influenced by the presence of jumps.
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value associated with delaying investment in increased capacity (Mason and Wilmot,

2016). Similarly, the presence of jumps implies an option value to waiting to add E85

fueling stations, or delaying land conversion.

Other benefits accrue from the ability to better frame the underlying stochastic

model in an investment under uncertainty framework, which we believe has real po-

tential for evaluating important large-scale infrastructure investments such as refinery

expansions or import/export terminals. Because such enhancements to transportation

infrastructure may have far-reaching benefits, for example by facilitating gas movements

to regions with larger demand, the welfare consequences of these investments may be

substantial. The potential for substantial welfare implications of these investments un-

derscores the importance of developing a better understanding of the stochastic process

underlying biofuels prices, which in turn highlights the value of developing a more accu-

rate empirical model to describe these prices.
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Figure 1: US Ethanol production, by type: D4 vs. D6.
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Figure 2: The share of global soybean production: Brazil and the US.
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Figure 3: Soybean production from Brazil and the US.
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Figure 4: Price returns plots for Brazilian soybeans (panel a), US soybeans (panel b) and ethanol (panel c)
price returns.

Source: Authors’ calculations.
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(a) (b)

(c)

Figure 5: Quantile-quantile plots for soybeans (panel a), corn (panel b) and ethanol (panel c) price returns.
Source: Authors’ calculations.
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Figure 6: The impact of jump probability upon the critical investment value.
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Figure 7: The impact of jump mean upon the the critical investment value.
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Figure 8: The impact of jump variance upon the the critical investment value.
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Table 1: Summary statistics

Brazilian Soybean Brazilian Ethanol US Soybeans
Prices Returns Prices Returns Prices Returns

Start 7/29/1997 7/30/1997 7/29/1997 7/30/1997 7/29/1997 7/30/1997
End 12/19/2023 12/19/2023 12/15/2023 12/15/2023 12/19/2023 12/19/2023

Mean 20.72 0.01 388.93 194.48 948.53 0.0081
Variance 62.26 1.70 27101.11 51372.81 122,533.13 2.46
Std. Dev. 7.89 1.30 164.62 226.66 350.05 1.57
Skewness 0.31 -0.14 0.78 0.83 0.28 -1.00
Kurtosis -0.85 3.53 -0.40 -0.42 -1.02 7.87
Anderson –
Darling stat. 82.18 33.88 225.12 56.90 101.66 61.84
N 6574 6573 6648 6647 6652 6651

Note: Brazilian Soybean returns measured by CEPEA Soybean Price Index, as reported by the Department
of Luiz de Queiroz College of Agriculture (ESALQ); US Soybean returns measured by Futures Price -
Front Month Contracts; Brazilian Ethanol returns measured by CEPEA/ESALQ hydrous ethanol Index.
Kurtosis is measured as “excess” kurtosis (i.e., above 3), so that normal distributed variables should
have values close to 0. All values of the Anderson-Darlington Normality test are statistically significant
at better than the 1% level, strongly rejecting null hypothesis of Normality.
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Table 2: Estimation of the Model Parameters for Daily price returns

µ σ κ α1 β1 λ θ δ

A. Brazilian Soybeans
PD 0.008 1.303***

(0.008) (0.011)

JD 0.033* 0.901*** 0.343*** -0.073 1.586***
(0.019) (0.039) (0.078) (0.047) (0.130)

GPD 0.014 0.043*** 0.076*** 0.900***
(0.014) (0.006) (0.007) (0.009)

GJD 0.019 0.010*** 0.067*** 0.904*** 0.171*** -0.113 1.476***
(0.016) (0.004) (0.006) (0.009) (0.042) (0.081) (0.136)

B. Brazilian Ethanol
PD -1.468** 1.448

(0.671) (1.549)

JD -0.022 1.021*** 0.253*** 0.045 2.021***
(0.021) (0.038) (0.056) (0.074) (0.175)

GPD 0.050** 0.073*** 0.108*** 0.859***
(0.022) (0.020) (0.015) (0.021)

GJD 0.010 0.050*** 0.097*** 0.847*** 0.097*** 0.209 2.036***
(0.023) (0.018) (0.018) (0.030) (0.037) (0.188) (0.296)

C. US Soybean
PD 0.008 1.570***

(0.008) (0.014)

JD 0.089*** 1.092*** 0.201*** -0.404*** 2.417***
(0.019) (0.028) (0.032) (0.106) (0.153)

GPD 0.012 0.033*** 0.076*** 0.913***
(0.016) (0.006) (0.006) (0.007)

GJD 0.041** 0.029*** 0.044*** 0.930*** 0.042*** -1.106*** 3.258***
(0.002) (0.005) (0.004) (0.006) (0.010) (0.353) (0.337)

Note: Standard errors in parentheses. Sample period: start of data reported in Table 1. Number of
observations: 6,573 for soybeans; 6,647 for corn; 3,412 for ethanol; 6810 for US soybeans. Asterisks
signify statistical significance:
*: better than 10% level; **: better than 5% level; ***: better than 1% level.

37



Table 3: Likelihood ratio test statistics

PD vs. JD PD vs. GPD JD vs. GJD GPD vs. GJD

Brazilian Soybean Spot Returns 614.6 976.7 636.4 274.2
(0.000) (0.000) (0.000) (0.000)

Brazilian Ethanol Returns 3,835.8 4,006.0 314.9 144.7
(0.000) (0.000) (0.000) (0.000)

US Soybean Returns 1,116.4 1,340.2 532.6 308.9
(0.000) (0.000) (0.000) (0.000)

Note: p-values presented (in parentheses) below test statistics.
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Table 4: Estimation of the Model Parameters for Daily price returns: Pre - July, 2014

µ σ κ α1 β1 λ θ δ

A. Brazilian Soybeans
PD 0.014 1.364***

(0.018) (0.023)

JD 0.071*** 0.777*** 0.527*** -0.108*** 1.515***
(0.023) (0.048) (0.100) (0.067) (0.172)

GPD 0.033* 0.048*** 0.103*** 0.874***
(0.018) (0.008) (0.011) (0.012)

GJD 0.045** 0.012** 0.083*** 0.880*** 0.181*** -0.192* 1.556***
(0.019) (0.005) (0.009) (0.013) (0.042) (0.099) (0.148)

B. Brazilian Ethanol
PD -0.024 1.310***

(0.039) (0.028)

JD 0.010 0.856*** 0.263*** 0.132 1.911***
(0.030) (0.045) (0.069) (0.138) (0.221)

GPD 0.058* 0.050*** 0.134*** 0.839***
(0.033) (0.016) (0.023) (0.025)

GJD -0.001 0.121** 0.231*** 0.618*** 0.119 0.254 1.621***
(0.034) (0.053) (0.046) (0.080) (0.083) (0.280) (0.409)

C. US Soybean
PD 0.014 1.671***

(0.028) (0.018)

JD 0.123*** 1.128*** 0.237*** -0.458*** 2.426***
(0.024) (0.037) (0.042) (0.122) (0.171)

GPD 0.009 0.045*** 0.075*** 0.910***
(0.021) (0.009) (0.008) (0.010)

GJD 0.062*** 0.034*** 0.043*** 0.930*** 0.055*** -1.133*** 3.014***
(0.022) (0.008) (0.005) (0.008) (0.017) (0.399) (0.377)

Note: Standard errors in parentheses. Sample period: start of data reported in Table 1 through 12/31/2004.
Number of observations: 1,842 for Soybeans, 2,028 for corn. Asterisks signify statistical significance:
*: better than 10% level; **: better than 5% level; ***: better than 1% level.
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Table 5: Estimation of the Model Parameters for Daily price returns: Post - June, 2014

µ σ κ α1 β1 λ θ δ

A. Brazilian Soybeans
PD -1.460* 1.186

(0.843) (2.154)

JD -0.027 0.985*** 0.293 0.087 1.216***
(0.033) (0.065) (0.197) (0.113) (0.256)

GPD -0.010 0.019*** 0.031*** 0.955***
(0.023) (0.008) (0.007) (0.010)

GJD -0.028 0.006 0.030*** 0.958*** 0.101* 1.158 1.525***
(0.026) (0.005) (0.008) (0.011) (0.053) (0.194) (0.281)

C. Brazilian Ethanol
PD -0.005 1.506***

(0.032) (0.022)

JD -0.027 1.124*** 0.210*** 0.103 2.174***
(0.036) (0.046) (0.062) (0.193) (0.250)

GPD 0.021 0.337*** 0.180*** 0.839***
(0.030) (0.106) (0.039) (0.025)

GJD 0.007 0.050** 0.063*** 0.618*** 0.101*** 0.142 2.284***
(0.030) (0.021) (0.016) (0.080) (0.037) (0.233) (0.346)

D. US Soybean
PD -0.003 1.369***

(0.018) (0.020)

JD 0.0387 1.056*** 0.114*** -0.364 2.501***
(0.027) (0.055) (0.058) (0.268) (0.509)

GPD 0.015 0.026*** 0.072*** 0.916***
(0.023) (0.007) (0.010) (0.010)

GJD 0.018 0.029*** 0.043*** 0.930*** 0.027*** -1.011 3.657***
(0.024) (0.008) (0.007) (0.011) (0.011) (0.689) (0.650)

Note: Standard errors in parentheses. Sample period: 1/1/2005 through end of data reported in Table 1.
Number of observations: 2,998 for Soybeans, 3,061 for corn. Asterisks signify statistical significance:
*: better than 10% level; **: better than 5% level; ***: better than 1% level.
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7. Appendix: Details on Brazilian Data Processes

In the first part of the Appendix, we provide additional detail on the Brazilian

soybean and ethanol data.22 Brazilian soybean prices are related only to soy delivered

in Parana port, either Delivered at Place (DAP), or in silos or other delivery mechanisms

which are accessible to ships’ loading apparatus, known as Free at Shipside (FAS) delivery.

All prices are converted to present values; specifically, futures contracts are converted to

cash value based on the time in days between negotiation and payment. This is not related

to the delivery term of futures contracts. CEPEA uses a conversion between Brazilian reals

and US dollars based on the commercial market USD sale price as of 4:30 pm.

To build this data series, CEPEA contacted all possible industry members regardless

of sophistication and size, ranging from soy producers to trading firms and brokers and

soy consumers such as chicken and hog farmers. These organizations were each reviewed

for their capacity to participate in the data provision in a reliable way, as well as with

an eye toward selecting a representative sample of participants to capture a full picture

of regional soy prices. Contributors are only retained if they participated regularly in

meetings with CEPEA and if provided data regularly during those meetings.

Daily data is collected at random from qualifying contributors throughout the day

from 0900-1700, to be aggregated and published by 1800. Once all data points are collected,

which include unmet offers of sale and purchase, those offers which are outside the daily

range of transacted prices are excluded. A simple mean of the remaining data points

constitutes the initial average. Then, data points outside of the range of two standard

deviations are excluded, and a new average calculated. Subsequently, the coefficient of

variation is compared to a critical value (CV), defined as 25% above the average of the past

22 An explanation of the methodology associated with the construction of this data is avail-
able in the file “Metodologia” (accessible at http://www.cepea.esalq.usp.br/br/metodologia/
metodologia-da-soja-esalq-bm-fbovespa-paranagua.aspx.
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20 days’ coefficients of variation. If the current day’s CV is above this, the current day’s

average price is compared to the prior day’s published price indicator, potentially resulting

in exclusion of additional data (this process consists of removing the most “extreme” data

points successively until the above critical value comparison is passed).

Since 5 April, 2015, any day with five or fewer qualifying data points, the prior

day’s published price indicator is added as a single data point and the above procedure is

followed as usual. When there are two or fewer qualifying data points, all offers and bids

are added in regardless of whether they are outside the range of transacted prices on that

day. The remaining analysis on these dates follows the above process. We use data from

March 2006 to April 2017; in total, there are 2,765 observations.

Brazilian ethanol prices are reported as daily present cash value equivalents in US

dollars per cubic meter.23 Prices are related only to fuel ethanol delivered in Paulı́nia or

sent to other destinations such as Guarulhos, Barueri, Santo Andre, Sao Caetano do Sul,

Sao Jose dos Campos, Cubatao, Ipiranga and Sao Paulo. The final prices are calculated

taking the deliveries costs to Paulı́nia into account (i.e., final price is the sum of ethanol

price plus estimated freight between the mills and Paulı́nia).

23 A discussion of the methodology used to construct this time series is available at https://www.
cepea.esalq.usp.br/en/methodology/methodology-12.aspx.

42

https://www.cepea.esalq.usp.br/en/methodology/methodology-12.aspx
https://www.cepea.esalq.usp.br/en/methodology/methodology-12.aspx

	Introduction
	Econometric Framework
	Data and data properties
	Econometric Results
	Main Results
	Extensions

	The influence of jumps on investment under uncertainty
	Conclusion
	Appendix: Details on Brazilian Data Processes

