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Abstract

Economies are increasingly adopting renewable energy certificates as a policy
mechanism to support the transition away from reliance on fossil fuels. We
investigate the price of solar renewable energy certificates (SRECs) in New
Jersey, allowing for the potential presence of jumps and time-varying volatility.
We find that both features play an important role in the stochastic process
describing SREC price returns. We also simulate the implied probability that
at least one jump would occur in any given month. These implied probabilities
indicate that jumps played a consistently important role in both SRECs and
electricity prices. Jumps in SRECs appear to have been particularly noteworthy
between late 2011 and early 2013, a period when electricity prices in New Jersey
were relatively high. This result hints at the potentially important role of
market structure in driving fat tails in price returns.
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1 Introduction

“Change is inevitable, but transformation is by conscious choice.” Amara (2014)

Renewable energy sources form the centerpiece of a strategy aimed at reducing green

house gas (GHG) emissions. Indeed, a fundamental transformation of the energy

system is likely to be required if mankind is to limit potential future damages from

climate change (Nemet, 2019). An important part of this energy transition is likely

to entail widespread adoption of renewables in general, and most likely solar power

in particular.1

Solar power generation produces less GHG emissions than electricity deriving from

the combustion of fossil fuels. The Energy Information Administration (EIA) forecast

that solar power, which only accounted for 3% of US generation in 2020, will grow to

20% by 2050 (U.S. Energy Information Administration, 2021). Indeed, between 2014

and 2020, solar generation from photovoltaic (PV) has increase by 389%, in the US.

Such growth has been driven by increases in both the Utility scale generation (475%)

and small scale (rooftop) generation has also experienced significant growth (271%).2

Numerous policy and regulatory frameworks have been proposed to incentivize

the instillation of renewable energy, so as to achieve long term reductions in carbon

emissions. Many US states have introduced a renewable portfolio standard (RPS) to

1 (Nemet, 2019, p. 14) writes: “[m]ajor changes are needed to adapt energy systems in order to
ensure that PV [photovoltaic] is a central, rather than peripheral, component of energy systems.”

2 The EIA defines utility-scale solar to be generation of at least 1 MW of capacity, while small-
scale solar generation would be less than 1 MW of capacity. For a thorough discussion of the various
factors that have contributed to the rise of solar energy see Nemet (2019).
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stimulate the production of energy from renewable sources. One policy, that can be

used to comply with the RPS mandate, is the use of ‘renewable energy certificates’

(RECs). These RECs require a tradable certificate be issued to the generator of

each MWh of renewable energy, who is then allowed to sell the REC in a market.

New Jersey (NJ) was an earlier adopter of this system. Having adopted ambitious

future targets for solar generation, NJ instituted a market for solar renewable energy

certificates (SRECs), production credits awarded to owners of grid-connected solar

PV systems (Coulon et al., 2015).

Like many sources of renewable energy, the lion’s share of the cost associated

with a solar project is born up front. This raises the potential for slower adoption of

solar technology. With large up-front costs, the economic benefits of an investment

is substantially driven by the flow of earnings after installation, be they in the form

of reduced energy bills (for homeowners) or credits from adopting the new technol-

ogy such as SRECs (Davis and Owens, 2003). This benefit flow must be compared

against the (sunk) cost of investment. When either benefits or costs are uncertain, the

problem becomes on of “investment under uncertainty” (Dixit and Pindyck, 1994).

For this this type of problem, the decision-maker may choose at any point in time

to invest immediately or to delay investment. If the payoff to the investment can

either increase or decrease, as will naturally occur in the presence of uncertainty,

delaying allows the decision-maker to reduce the potential for ex post regrets after

making an investment that falls in value. In this way, delaying the investment can
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generate an increase in expected payoff; this increase in value is akin to the value

associated with a financial option.3 A key point is that factors that increase the option

value would strengthen the incentive to delay (Dixit and Pindyck, 1994; Kellogg,

2014). These factors include changes in the underlying variance of the source of

uncertainty, but they also can include features that contribute to fat tails in the

“stochastic process”. Such fat tails can arise because of time-varying volatility or the

presence of unanticipated dramatic changes, sometimes called “jumps”.

Our goal in this paper is to formally assess the empirical importance of jumps and

time-varying stochasticity in SREC prices. Using maximum likelihood estimation, we

evaluate the percentage change in three key energy prices: SRECs, electricity spot

prices and natural gas spot prices. We find that allowing for jumps and time-varying

volatility provides statistically important improvements over models that do not ac-

count for such features, for each of these energy prices. The preferred econometric

specification, which allows for both time-varying volatility and jumps, can then be

used to estimate the implied probability that at least one jump would occur over a

particular time interval (in our application, one day). Upon constructing these jump

probabilities, we find that the estimated jump probability for SREC prices is large

at a number of points in time, in particular from late 2011 to early 2013 – a period

of relatively high electricity prices in New Jersey. Because the possibility of jumps

raises the option value of waiting to invest, one conjecture is that tighter markets

3 Many applications in this genre refer to the investment under uncertainty problem with the
moniker “real options”.
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could be associated with a slower pace of investment – which in this application sug-

gests an additional factor that could retard the transition to solar power.4 We also

discuss the implications of allowing for fat tails in SREC price returns, for example

by including jumps; here we undertake a simulation analysis that shows the option

value of waiting to invest is larger the larger is: the probability of a jump occurring,

the expected value of the jump size, or the variance associated with jump sizes.

2 Literature Review

Increasing interest from state and local policymakers in the development of renew-

able energy markets has led to the rapid adoption of renewable portfolio standards

(RPS). Many of the state RPS laws include a “solar carve-out”, which mandates

a percentage of power supplied derives from solar generation sources. Hence, RPS

creates demand for renewable energy and stimulates investment in renewable energy

generation. Krasko and Doris (2013) report that, between 1996 and 2007, more than

half of U.S. states had formalized RPS. The authors examine the use of state pol-

icy as a tool to support the development of distributed generation photovoltaic (PV)

markets. Using cross sectional data, the authors find evidence suggesting that market

4 At the same time, the implied probability of jumps in the natural gas prices were much smaller.
One important distinction between the markets for SRECs on the one hand and natural gas on the
other is the thickness of the market: the volume of trades in SRECs was much smaller, and the
market much less mature, than the market for natural gas. This contrast raises the possibility that
a thinner market, which one might expect to be less intensely competitive, might be tied to a greater
tendency for jumps. An alternative explanation is that gas can be stored while electricity can not,
suggesting that both electricity prices and solar credits could be more prone to larger and more
frequent jumps in price.
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supporting policies can be effective at increasing overall PV capacity.

SRECs are financial instruments, created by a state, that are granted to producers

of solar power when they generate electricity from solar sources in certain states and

under certain conditions (Cohen et al., 2022). SRECs have become an important tool

for increasing the proportion of solar energy collected for power generation. However,

the nascent nature of this market means that the SREC market experiences signif-

icant price volatility. Lee et al. (2017) report eight states in the U.S. have SREC

markets, with Massachusetts and New Jersey showing the highest residential average

retail prices (2013). The higher expected price makes residential installation more at-

tractive, allowing residents to obtain a future revenue stream based on SREC prices.

On the other hand, the high volatility causes uncertainty of profits and discourages

the installation of solar PV systems.5

Using county level data for 13 Northeastern states, Crago and Chernyakhovskiy

(2017) examine the impact of policy incentives for residential PV capacity. These

authors report that, while rebates are a highly significant predictor of solar capacity

additions, SREC prices were not significant. They further argue that the lack of sig-

nificance may be due to the volatility in the prices during the period studied (emphasis

added). Under North Carolina’s RPS compliance market, installation of solar power

5There is the additional concern that prolific adoption of solar panels could induce a measurable
increase in electricity supply, thereby lowering price – and hence the value of the investment in solar
panels. Indeed, Mwampashi et al. (2021) argue that widespread adoption of rooftop solar in Aus-
tralia’s National Electricity Market depressed the level of spot prices while increasing price volatility;
both of these effects would exert an adverse impact on the value of investment in rooftop solar in
the first instance. Jha and Gordon (2021) document a similar price effect, arguing that rooftop solar
adoption in Western Australia is sufficiently impactful as to induce utilities to occasionally curtail
power deliveries.

5



has only enabled a few large solar power producers to compete with utility companies

to finance, install, and operate solar generating systems (Gaul and Carley, 2012).

The potential that heightened price volatility can reduce investment is well-documented

in the energy literature. Pindyck (2004) examines the behavior of volatility in both

the natural gas and oil markets, arguing that volatility alters the incentives to invest

in production facility, storage, and transport infrastructure. Indeed, volatility is a key

element for the pricing of derivatives, hedging strategies and the decision to invest

in physical capital (real options). Relatedly, Efimova and Serletis (2014) show that

GARCH models explain price volatility for crude oil, natural gas and electricity. Ma-

son and Wilmot (2016a) show that delaying investment in physical assets could occur

because of discontinuities – or “jumps” – in the relevant market price. Similarly, in

an analysis of the market for renewable identification numbers (RINs), Mason and

Wilmot (2016b) show that a stochastic model which includes jumps provides a com-

pelling explanation of the data. Their results indicate the statistical importance of

incorporating jumps in a model of price returns.

The empirical importance of jumps has been documented for a variety of energy

markets, including oil (Askari and Krichene, 2008; Gronwald, 2012; Postali and Pic-

chetti, 2006; Wilmot and Mason, 2013), natural gas (Benth et al., 2008; Mason and

Wilmot, 2016a), carbon permits in the European Union trading market (Alberola

et al., 2008; Chevallier and Sévi, 2014; Daskalakis et al., 2009; Hammoudeh et al.,

2014), and coal (Wilmot, 2016; Xiaoming et al., 2012).6 A natural consequence of

6 Indeed, Chevallier and Ielpo (2014) argue that many energy prices are subject to these effects.
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jumps in energy commodity prices is that electricity spot prices can also exhibit jumps

(Benth et al., 2008; Huisman and Mahieu, 2003). The jumps in these energy prices

can be large: Huisman and Mahieu (2003) show that daily jumps in electricity prices

can be on the order of 30%. Similarly, Thompson et al. (2009, p. 227) observe “high

[natural gas] price spikes far outside normal seasonal equilibrium levels;” and Chen

and Forsyth (2010, p. 359) argue it “is not uncommon to see spot gas price jumps ...

as much as 20% in a single day.”

Similar to this earlier literature, there is evidence that the SREC market in NJ

has exhibited volatile price dynamics (Coulon et al., 2015); this has the potential

to reduce investments in solar power generation due to the increased risk from large

price swings. These authors propose a stochastic model to examine the behavior

of SREC market prices, which includes a feedback mechanism for power generation

decisions. Utilizing monthly data, over the period July 2008 through March 2014,

they model the historical dynamics of SREC prices. The model requires numerical

solution algorithm, which the authors argue must be carefully chosen, as the historical

SREC price behavior is extremely challenging to capture or understand in a classical

econometric price model.

Understanding the nature of these price movements has important implications

These energy markets can sometimes be correlated Gonzalez-Pedraz et al. (2014); Asche et al.
(2006) and Panagiotidis and Rutledge (2007) demonstrate a link between UK natural gas prices and
European crude prices. On the other hand, (Brown and Yücel, 2008, p. 48) argue that there has
been a fundamental change in the relationship between oil and gas prices after 2000. And while the
data from 2000 – 2006 is reflective of emerging technological trends, it predates the major burst in
gas production that followed the widespread application of fracking. With prices subject to jumps,
it is not unexpected that related derivatives would also exhibit jumps – for example, the convenience
yield associated with holding crude oil stockpiles (Mason and Wilmot, 2020).
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for large-scale investment decisions, particularly when these decisions entail up-front

costs that are costly (or impossible) to reverse. Here too there is a long tradition in the

literature of analyzing investment decisions when key ingredients, such as underlying

prices, are stochastic. Much of this literature follows the seminal work of Dixit and

Pindyck (1994). A key insight here is that there is a value to waiting – reflecting the

potential for the gain from investing to increase over time; this value is referred to as

the “option value” of delaying investment. In general, the larger is the option value

from delaying, the later will the investment be undertaken. Of direct relevance to our

analysis, Torani et al. (2016) evaluate a model of investment in solar projects under

uncertainty. Their model assumes solar installation prices follow geometric Brownian

motion; they allow for neither GARCH-style volatility nor jumps in prices.7 By

contrast, we do allow for both GARCH and jumps in our model of SREC prices, and

find that both aspects are statistically important.

These results have clear implications for a broad range of decisions involving re-

newable energy, from larger decisions (such as a utility’s decision to install a substan-

tial solar farm) to smaller decisions (such as a homeowner’s decision to install rooftop

solar). There is a robust literature that has studied problems of investment under un-

certainty; many of these papers study applications to energy and climate economics.

A number of authors have studied applications to non-renewable energy resources,

such as oil or gas, often with a focus on production from a single well. A repre-

7 They also argue that electricity price uncertainty plays an important role in impacting the
volatility of solar markets.
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sentative sample of these papers includes Almansour and Insley (2017); Conrad and

Kotani (2005); Cortazar and Casassus (1998); Davis and Lund (2018); Insley (2017);

Kellogg (2014); Mason (2001); Muehlenbachs (2015) and Paddock et al. (1988). The

broad consensus from this literature is that the development of energy resources can

often be characterized in a fashion that is consistent with real option theory. In par-

ticular, the notion of the option value of waiting, which is central to our discussion,

is empirically relevant in these applications.

3 Methods and Materials

3.1 Econometric Methods

To present the stochastic process under investigation, let Pt denote the price of SREC

at time t, which follows a geometric Browniam motion (GBM) process. Define α as

the trend, and σ as the variance, so that

dPt = αPtdt + σPtdz. (1)

In Eq. 1, dz represents an increment of a Wiener process, dz = ξ
√
dt, where ξ has zero

mean and a standard deviation equal to 1. (Dixit and Pindyck (1994)). Let xt denote

the natural logarithm of the ratio of price in period t to the price in period t − 1,

xt = ln(Pt)− ln(Pt−1). If Pt follows a GBM process then xt is normally distributed
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with variance σ2 and mean µ = α− σ2/2. This gives the pure diffusion (PD) model

xt = µ+ σzt (2)

The term zt in Eq. 2 is an identically and independently distributed (i.i.d.) random

variable with mean zero and variance one.

As we observed in Section 2 above, many authors have argued that continuous

stochastic processes, such as GBM, are insufficient for explaining discontinuous move-

ments, or “jumps”, in prices. To introduce jumps into the above model, we adapt

the methodology in Merton (1976) – wherein returns are composed of two types

of changes. The first, ‘normal’ fluctuations, are represented through the geometric

Brownian motion process, while the second – ‘abnormal’ shocks due to the arrival of

new information – are modeled through a discontinuous process. The discontinuities

are described by the Poisson distribution governing the number of discrete-valued

events, ηt ∈ {0, 1, 2, ...}, that occur over the interval (t− 1, t),

P (Nt = j) =
exp(−λ)λj

j!
(3)

Eq. 3 is characterized by the jump intensity, λ, which describes the mean number of
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‘events’ per unit of time and is expressed as

dnt =


0 with probability 1− λdt

1 with probability λdt

(4)

As in Askari and Krichene (2008), when abnormal information arrives at time

t, prices jump from Pt− (the limit as the time index tends towards t from left) to

Pt = exp (Jt)Pt−. Accordingly, Jt measures the percentage change in price. The

resultant stochastic process for the random variable Pt may then be written as

dPt

Pt

= αdt+ σdzt + (exp (Jt)− 1) dnt, (5)

where dzt has the same properties assumed in equation (1) and dnt is the independent

Poisson process described in equation (4). Together the terms dzt and dnt make up

the instantaneous component of the unanticipated return. It is natural to assume

these terms are independent, since the first component reflects ordinary movements

in price while the second component reflects unusual changes in price. The size of

the jump, Yt,k, is itself a random variable; we assume it is normally distributed with

mean θ and variance δ2, and that it is independent of the distribution for the arrival

of a jump. The jump component affecting returns between time t and time t+1 is

then

Jt =
nt∑
k=0

Yt,k. (6)
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Thus, the mixed jump-diffusion (JD) process for the log-price returns can be described

by

xt = µ+ σzt + Jt. (7)

The probability density function governing x can be derived by applying Bayes’

law (Chan and Maheu, 2002; Maheu and McCurdy, 2004). To this end let f(xt|nt =

j,Ωt−1) denote the conditional density of returns if j jumps have occurred and given

the available information Ωt−1. Based on Bayes rule, when xt is observed, the posterior

probability that j jumps will occur at time t is

P (nt = j|Ωt−1) =
f(xt|nt = j,Ωt−1)P (nt = j|Ωt−1)

P (xt|Ωt−1)
. (8)

Then, assuming that the conditional density of xt is normally distributed, and using

equation (3) to describe the probability that j jumps occur, we obtain:

f(xt|nt = j,Ωt−1) =
1√

2π(σ2 + jδ2)
exp(−(xt − µ− θj + θλ)2

2(σ2 + jδ2)
). (9)

Finally, integrating out the discrete valued number of jumps yields an expression for

the conditional density in terms of observable variables:

P (xt|Ωt−1) =
∞∑
j=0

f(xt|nt = j,Ωt−1)P (nt = j|Ωt−1). (10)

An alternative explanation for the “fat tails” that are often observed in commodity
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price data is that Pt is subject to time-varying volatility. An example of such a phe-

nomenon is the “generalized autoregressive conditional heteroskedastic” (GARCH)

framework. Adapting the pure diffusion model to allow for this form of time-varying

volatility gives the GARCH–diffusion (GPD) process:

xt = µ+
√
htzt, (11)

where the conditional variance, ht is described by the process

ht = κ+ α1 (xt−1 − µ)2 + β1ht−1. (12)

Note that when ht = σ2 the GARCH–diffusion model (GPD) reduces to pure diffusion

model (PD). On the other hand, when κ > 0 and α1+β1 < 1, the unconditional vari-

ance of the volatility of the process exists and equals κ
1−α1−β1

. The process described

in equations (11) – (12) is characterized by four parameters, µ, κ, α1 and β1. There is

a general consensus in the literature is that a GARCH model with a limited number of

terms performs reasonably well (Akgiray, 1989; Hansen and Lunde, 2005; Sadorsky,

2006), and so we focus our analysis on this more parsimonious representation.8 Allow-

ing for jump discontinuities would result in the GARCH(1,1) jump-diffusion (GJD)

process:

xt = µ+
√
htzt + Jt, (13)

8 Duan (1997) shows that the diffusion limit of a large class of GARCH(1,1) models contain
many diffusion processes allowing the approximation of stochastic volatility models by the GARCH
process.
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where ht is described by equation (12).

We evaluate the four models using maximum likelihood estimation methods, which

are known to provide consistent and invariant estimates, with asymptotically normal

distributions of the parameters. To this end, we note that the parameters of our

four candidate models – PD, JD, GPD, GJD – may be nested into the general log-

likelihood function

L (ϕ, xt) = −Tλ+
T∑
t=1

ln

[
∞∑
n=0

λn

n!

1√
ht + nδ2

exp

(
− (xt − µ− nθ)

2 (ht + nδ2)

)]
+K, (14)

where K is the constant T ln(2π)
2

, n indexes the number of jumps, combined with the

description of ht given in equation (12).9 In this framework, the GPD model cor-

responds to the parameter restriction λ = θ = δ = 0; the JD model corresponds

to the restriction α1 = β1 = 0; and the PD model corresponds to the restriction

α1 = β1 = λ = θ = δ = 0.

Comparing any pair of potential models can thus be framed as a test of an ap-

propriate parameter restriction. For example, the comparison of the PD and GPD

models is conducted by testing the parameter restriction α1 = β1 = 0; the compar-

ison of the PD and JD models is conducted by testing the parameter restriction

λ = θ = δ = 0. The empirical validity of the parameter restriction of interest can be

evaluated by use of the likelihood ratio test. This approach compares the likelihood

9 To faciliate estimation based on eq. (14), the number of jumps was truncated at 10 (Ball and
Torous, 1985). Allowing more jumps did not significantly change the point estimates.
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function under a particular restriction, L(ϕR;x ), to that of the unrestricted or less

restricted likelihood function, L
(
ϕ̂;x

)
. Under the null hypothesis that the restric-

tion is empirically valid, the decrease in the likelihood function associated with the

restriction will be small. Such an approach can be used to make pairwise-comparisons

between a more general model and a more restricted model. The test statistic is the

log-likelihood ratio

LR = 2[L(ϕ̂;x)− L(ϕR;x)];

under the null hypothesis this statistic will be distributed as a Chi-square random

variable with m degrees of freedom, where m is the number of parameter restrictions.

3.2 Data

Our empirical analysis is based on daily price observations. We obtained SREC prices

from the New Jersey Clean Energy program website.10 Natural gas prices are based

on the Henry Hub spot price.11 For electricity, we used the PJM Western hub price12,

as this range includes New Jersey.

Table 1 provides summary statistics for the log-returns, calculated as xt = ln(Pt)−

ln(Pt−1), for each of the prices returns series. The statistics indicate a significant

amount of variation among the three variables, though SERC returns exhibit the

lowest relative level of dispersion. Evidence of asymmetry in the distribution of

10 Accessed at https://njcleanenergy.com/renewable-energy/project-activity-reports/srec-
pricing/srec-pricing-archive

11 https://www.eia.gov/dnav/ng/ng pri fut s1 d.htm
12 https://www.eia.gov/electricity/wholesale/
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returns is also highest for SERC returns, while electricity prices exhibit negative

skewness. The “fat tails” are evident from the large values of kurtosis. The normality

hypothesis of the Kolmogorov-Smirnov test is rejected, for each time-series. Lastly,

Table 1 contains the results of the modified ADF test of nonstationarity. In each

of the log return series the null hypothesis of a unit root is rejected, in favor of

stationarity.13

These results are corroborated by Figures 1 and 2. Figure 1 displays the log returns

for the three energy series. Notably, large sudden changes in the returns are evident,

and appear with less frequency for natural gas returns, though on a larger scale for

SREC solar price returns. Also, the large changes in SREC solar price returns are

evident, and the positive shocks appear much larger in amplitude than the negative

changes. Figure 2 displays “quantile-quantile” plots, for the three return series. This

plot compares the quantiles of the empirical distribution (measured on the y-axis)

against the quantiles of a theoretical normal distribution (measured on the x-axis).

If the empirical distribution is close to a normal distribution, the relation will be

well described by a straight line. As demonstrated in the figure, there are significant

departures from a linear relation, indicating that the date is not well-described by a

normal distribution. Indeed, the significant departures observed in along the ends of

the plots are indicative of significant leptokurtosis and cast doubt on the assumptions

13 While not reported in the table, the SREC solar credit, natural gas, and electricity prices are
nonstationary (in levels), and thus first differencing (e.g. log returns) renders the series stationary.
The findings are supported by traditional unit root tests, the results of which are available upon
request.
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of an underlying GBM process.

4 Results

4.1 Maximum Likelihood Estimation

Using maximum likelihood methods, we estimate the parameters for the four stochas-

tic processes (PD, JD, GPD, GJD), using the daily returns series. The results of the

estimation are presented in Table 2, while the likelihood ratio test statistics, for the

pairwise comparison of the four models, are presented in Table 3.

Examining the pure diffusion results, the estimated drift parameter, µ, is positively

and statistically significant for SREC returns, though not statistically significant for

either natural gas or electricity prices.14 For each series, the estimated instantaneous

rate of variance, σ, is statistically significant. This same pattern holds when exam-

ining the drift and variance of the JD models, though allowing for jumps markedly

reduces the estimated instantaneous rate of variance. The estimated jump intensity,

λ, is statistically significant for each of the three series. The estimated value of λ is

largest for the SREC series; this estimate suggests jumps occur quite frequently for

SREC returns – roughly two out of every three days. Finally, the estimated mean

jump size, θ, is positive when the estimate is significant.

Comparing the results of the PD and GPD models, we see that allowing for

14 To improve convergence of the estimation procedure, we rescaled the price return series for
natural gas and electricity by multiplying by 100; the SREC returns were not rescaled.

17



GARCH also improved the models predictive power: the log-likelihood function shows

improvement, in each of the three series. The estimated coefficients associated with

the GARCH model, κ, α1 and β1, are statistically significant across each of the three

series. Additionally, all three series demonstrate persistent volatility, with α1+β1 close

to 1. Notably, the magnitude of the estimated value of κ is large for electricity price

returns – pointing to large overall variation in that series. Importantly, our results

indicate that combining GARCH with the jump model (GJD) yield the best results,

demonstrating the importance of including jumps. We note that the probability of

a jump occurring has fallen across all three series, while the GARCH terms remain

statistically significant. Evidently, the inclusion of GARCH captures some of the

estimated variance originally interpreted as jumps in the JD model, it does not render

the jumps irrelevant. Indeed, based on the decreased values of λ, and notable increases

in θ, the average jump size, one conceivable theory is that the small perturbations are

captured by the GARCH model while the larger discontinuous moves are represented

as jumps.

4.2 Likelihood Ratio Test Results

Results of the pairwise likelihood ratio tests are presented in Table 3. Each entry in

the table is a test of the form LRX,Y , where the null hypothesis is that the appropriate

stochastic process describing the data is X and the alternative hypothesis is that the

appropriate stochastic process describing the data is Y . The probability that the null
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hypothesis is preferred to the alternative, based upon the Chi-squared distribution,

is presented in the parentheses below each test statistics. The results indicate that

the null hypothesis is rejected at the 1% level of significance in every case. Such a

result is interpreted as demonstrating the statistically important gain in predictive

power associated with adopting the added complexity associated with moving to

specification Y , from X. Thus, for example, including GARCH improves upon the

JD model, while folding in jumps improves upon the GARCH model. Importantly,

the preferred specification allows from both jumps and time-varying volatility (GJD),

for each of the three series.15

4.3 Implied Probabilities

Figure 3 gives a visual representation of the implied probabilities of at least one jump

in the log price returns, occurring on each week, based on the JD model. The first

panel shows the probabilities for the SREC solar credit returns. Given the frequency

and persistence of implied probabilities that are well above 0.5, it is apparent that

jumps play an important role in both SREC and electricity markets. We note too that

15 One might be concerned that jumps in SREC prices are asymmetric, i.e., that unanticipated
positive shocks exert different effects than unanticipated negative shocks. To assess the potential
for such effects on our results, we considered a variation on the GARCH(1,1) model that includes
an asymmetric response parameter (known as “EGARCH”). We then collected the residuals from
this approach and compared them against the residuals from the GARCH(1,1) process discussed in
the main body of the paper, and found the two series were highly correlated. Then, we estimated
a jump model using the residuals and compared the likelihood statistic from this estimation to the
likelihood function from the EGARCH analysis, so as to evaluate the hypothesis that jumps are no
longer statistically important when asymmetries are allowed. The test results strongly reject that
hypothesis, corroborating the results outlined in the body of the paper. These results are available
upon request.
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the implied jumps close to 1 in the SREC markets are particularly common in 2012;

this is intriguing as electricity prices in New Jersey were particularly large during this

period. In contrast to the other two markets, the implied jump probabilities in the

natural gas are smaller, and less frequently close to 1.

One possible explanation for this distinction is that the natural gas market is

thicker than the other markets. In addition, the SREC market is noticeably less

mature, having only come into fruition in the last fifteen years; by contrast, natural

gas markets have been functioning for many years. Perhaps market thickness as well

as maturity might create a form of insulation from large transitory events – thereby

rendering jumps more important in younger or thinner markets, such as the SREC

market. An alternative explanation is that gas can be stored while electricity can

not, suggesting that both electricity prices and solar credits could be more prone to

larger and more frequent jumps in price. In addition, natural gas supply tends to

respond to gas demand; by contrast, in permit markets (such as the market for solar

credits) the supply is commonly exogenous (and are fixed). The inability of supply

to adjust to changes in demand in credit markets would then seem likely to induce

greater variation in prices – along with a greater tendency for abrupt changes.

5 Solar Investment Under Uncertainty with Jumps

In light of the results above, which highlight the empirical importance of fat tails

in solar credit price returns – and in particular the potential for jumps, a key issue
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here is the implication for investment in rooftop solar: do jumps influence investment

decisions, and if so how? Addressing this issue requires an analysis of the investment

decision with and without jumps; to that end, one needs to determine the value

associated with forestalling the investment together with a determination of the value

that is realized by investing. The former includes an “option value of waiting” to

invest, an important element in the analysis. The latter is the expected present

discounted value of the flow of rewards. Central to this investigation is a comparison

of the value of forestalling the investment against the expected discounted flow just

described. In this section, we provide such an analysis.

To illustrate the basic ideas, we adapt the analysis in Torani et al. (2016), who

consider a problem where a decision-maker such as a homeowner is contemplating

an investment in a solar project. The investment incurs an immediate cost that

is irreversible, but that provides the decision-maker with an asset that generates a

stream of benefits. In the solar installation case, the individual obtains a stream of

solar credits, based on the volume of electricity the installed unit produces – these

credits can be monetized in the solar credit market (with per unit value equal to

the “solar renewable energy credit” we discussed above). The key features of this

problem are that there is an economically significant up-front cost of investing, K,

that is either irreversible or so expensive to reverse as to be qualitatively irreversible;

and a stream of future rewards that depends on the per-unit value (or price) of the

solar credit, which Torani et al. (2016) assume follows a GBM process.
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5.1 Model formulation

The key stochastic ingredient in this framework is the price of a solar credit, which we

denote by P . Following Torani et al. (2016), we assume the amount of electricity pro-

duced from the investment is a constant, which we denote as q; the flow of payments

to the household associated with the solar credit is Pq . We start by working through

the problem when P follows a GBM process – as in their model. Later, we analyze

the problem when these processes are also subject to the potential for jumps.16

Assuming P follows a GBM process, its stochastic evolution is

dP/P = µdt+ σdz, (15)

where dz is an increment of a Wiener process, µ is a deterministic drift term and

σ characterizes the magnitude of stochastic variability in P . This form implies that

changes in P are log-Normally distributed. It turns out that both the expected value

and variance of P are increasing in both µ, and that the variance of is increasing in

16 One aspect of the GBM process is that changes tend to exert an effect for a considerable
length of time. An alternative approach would be to use a model in which the effect of changes in
prices tend to dissipate relatively more rapidly – for example, a mean-reverting process. Analysis
such a process is more complicated, though the broad principles we describe in this section still
apply Dixit and Pindyck (1994).
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σ.17

Upon execution, the value of an investment, V0(P ), is the expected flow of future

payments:

V0(P ) = E

{∫
Pqe−ρtdt

}
,

where ρ is the discount rate and E is the expectations operator. This value is readily

computed as

V0(P ) =
Pq

ρ− µ
. (16)

At any moment where the decision to undertake the investment has yet to be

made there are two possible decisions: either invest now or wait. The decision to

invest now yields the payoff V0(P ) −K, where K is the sunk cost of investing. The

decision to wait earns a flow payoff of 0 (since no action has been taken there are no

flow benefits), while the option value of investing in the future, F (P ), is retained.

Delay will deliver an anticipated change in F (P ) (which can be thought of as

the anticipated capital gains) less the foregone capitalized option value (which can

be thought of as the interest earned on the net returns). If delaying is optimal, the

fundamental equation of optimality requires that the optimal value function satisfies

17 Expressing the initial value of P as P0, the expected value of P (t) can be expressed as:

E [P (t)] = P0e
µt,

while the variance can be shown to equal

V[P (t)] = P 2
0 e

2µt(eσ
2t − 1).

See Dixit and Pindyck (1994), pp. 71 – 72 for further discussion.
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(Dixit and Pindyck, 1994):

ρF (P ) =
1

dt
E
[
d(F )

]
(17)

where the expression on the right-hand side is the so-called Itô operator. The left-

hand side of eq. (17) measures the capitalized option value, while the right-hand side

is the sum of flow payoffs plus anticipated capital gains.

We proceed by expanding the expression on the right-hand side, which gives rise

to18

1

dt
E
[
d(F )

]
= µPF ′(P ) +

1

2
σ2P 2F ′′(P ). (18)

Using eq. (18), we may express the fundamental equation of optimality as

σ2

2
P 2F ′′(P ) + µF ′(P )− ρF (P ) = 0. (19)

The solution to this equation is a power function:

F (P ) = aP b, (20)

where b is the solution to the quadratic Q(b) =
(
1
2
σ2
)
b(b − 1) + µb − ρ = 0. Since

Q is convex and both Q(0) and Q(1) are negative, there is one negative and one

positive root (which exceeds one) to this quadratic; of these, the negative root is

economically irrelevant and so the economically meaningful root exceeds one (Dixit

18 One way to think about this step is that a Taylor’s series expansion has been executed, with
higher order terms dropped; see Dixit and Pindyck (1994) for details.
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and Pindyck, 1994). It is straightforward to show that this root depends positively

on σ and negatively on µ.

The value function F (P ) can be interpreted as the value of an option to invest in

the future (Dixit and Pindyck, 1994). This option value is compared against the net

benefits from acting (investing) at each time t (i.e., V0). It is optimal to invest when

the net benefit from acting now just equals the option value of waiting; this implies

a cutoff value P ∗, which is implicitly defined by the “value-matching” condition:

F (P ∗) = V0(P
∗)−K.

Together with the “smooth-pasting” condition

F ′(P ∗) = V ′
0 (P

∗),

this determines the optimal time to invest:19

P ∗ =
b(ρ− µ)

b− 1
K. (21)

Since investment is delayed until P rises to this cutoff value, investment will tend

to be undertaken sooner the larger is µ or the smaller is σ. These features can also

be characterized in terms of the option value. Because a larger option value raises

19 From eq. (16) P ∗V ′
0 (P

∗) = V0(P
∗), while from eq. (20) P ∗F ′(P ∗) = bF (P ∗). Using these

facts, combining the value-matching and smooth-pasting equations then yields eq. (21).
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the benefits from delay, it will tend to push back in time the moment at which the

decision to invest is taken. Intuitively, an increase in the variance of the stochastic

process raises the option value because of the potential for a more dramatic future

increase in the underlying value P ; delaying investment allows the decision maker to

strategically take advantage of such future movements. This effect is more important

the larger is the initial investment K.

Now suppose the value P evolves according to the mixed jump-diffusion process.

Here, we assume changes in P are composed of two types of changes: ‘typical’ fluc-

tuations, represented through the GBM process, and ‘abnormal’ fluctuations, due to

the arrival of new information or some unusual event. We model the arrival of these

abnormal fluctuations as following a Poisson process.20 Letting nt denote the number

of such events that have occurred as of time t, the change in nt during the interval

(t, t+∆t) is described by

dnt =


0, with probability 1− λdt

1, with probability λdt,

(22)

where λ > 0 is a parameter measuring the arrival frequency

We denote the size of a jump at time t, should one occur, as Jt; this is a random

variable which for convenience we assume is independently and identically distributed

20 Some authors model price jumps using a Lévy process, an approach that requires an ex ante
definition of a jump. For example, Benth et al. (2008) define a jump as an observation that falls
outside of 2 standard deviations from the mean. Other authors assume jumps follow a Poisson
process; one advantage of this approach is that there is no need to arbitrarily define a jump ex ante.
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as a lognormal random variable – i.e., that ln(J) is Normally distributed. The resul-

tant stochastic process for the random variable X may then be written as

dP/P = µdt+ σdz + Jdn. (23)

It can be shown that the expected value of the third term in eq. (23) is λθ, so that

the drift term in the expressions for the evolution of ln(P ) becomes (Wilmot, 2010):

µ̃ = µ+ λθ. (24)

In this setting, the equation governing the optimal value function is more com-

plicated that we discussed above. Here, the equation governing the optimal value

function is determined by the interaction between jump size, J , and continuation

value, V :

1

2
σ2P 2F ′′(P ) + α̃PF ′(P ) + λ

∫ ∞

0

F (PJ)G(J)dJ = 0, (25)

where G(J) is the probability density function governing jump size. This expression

can not generally be solved analytically; moreover, one can not apply the value-

matching and smooth-pasting conditions (Dixit and Pindyck, 1994, p. 86).

An alternative explanation for the “fat tails” that are often observed for many

energy commodities – in particular, the commodities we study in this paper – is that

those prices are subject to time-varying volatility. An example of such a phenomenon

is the “generalized autoregressive conditional heteroskedastic” (GARCH) framework.
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Adapting the pure diffusion model to allow for this form of time-varying volatility

gives a GARCH – diffusion process, under which the component σ in eq. (15) is

replaced by a time-varying component ht.
21 Again, this complication renders the

problem sufficiently complicated as to preclude obtaining an analytic solution. Ac-

cordingly, we resort to numerical methods in the discussion below, and so we proceed

using a numerical simulation.

5.2 Simulation Results

To facilitate numerical simulations, we must first specify the discount rate ρ; the

mean α and standard deviation σ of the GBM formulation; and the jump intensity

λ associated with the Poisson process. In our baseline simulations, we set these

parameters as ρ = 0.02, α = 0.04, σ = 0.2, and λ = 0.10. The distribution governing

Y , the magnitude of a jump (should it occur), is assumed to be lognormal – i.e.,

ln(Y ) is Normally distributed – with mean θ = 0 and standard deviation δ = 1.

For a given parameterization, we solve for the critical value associated with in-

21 The process in question is:

ht ≡ Et−1

(
σ2

)
= κ+ α1 (xt−1 − µ)

2
+ β1ht−1.

In this formulation, the variance at a point in time is a combination of a time-invariant term (κ)
and a weighted combination of the sample variance from last period (the second term, with weight
α1) and the variance from the preceding period (the third term, with weight β1). One advantage of
using such a formulation is that it allows for the underlying variance to change over time. This form
is characterized by four parameters, µ, κ, α1 and β1. There is a general consensus in the literature is
that a GARCH model with a limited number of terms performs reasonably well, and so we restrict
our focus to this more parsimonious representation.
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vesting; the interpretation is that when the expected value from investing meets or

exceeds this critical value, the investment will be taken. This critical value will cor-

respond to the sum of the investment cost itself and the option value of waiting. The

difference between the critical value and the requisite up-front investment may then

be interpreted as the option value of waiting. We also calculate the ratio of the critical

value to up-front investment cost.

Our first set of simulations investigates the role played by the jump intensity.

Here, we vary λ between 0 and 0.2, by increments of 0.05; results from this set

of simulations are summarized in Figure 4. This figure displays the option value

associated with delaying investment, for various levels of up-front investment (i.e.,

K) across the possible values of λ. The first feature we observe is that the option value

of delaying investment rises as the amount of money that must be invested increases.

This is intuitive: because larger investments require risking more money, the decision-

maker is more cautious about undertaking the investment. In these simulations,

the tendency to delay investment tends to be more pronounced as the probability

of a jump increases: while largely insensitive to λ when the required investment

is small, the option value of waiting does respond to increased jump intensity at

larger investment levels.22 Moreover, we note that the impact of increasing λ is most

pronounced at small value of λ. In particular, the largest effect appears to occur

when the probability of a jump occurring is increased from 0 to a positive value – i.e.,

22 One should not make too much of the seeming equivalence of option values at the smallest
level of K: The numerical grid we employ in the solution algorithm is not sufficiently granular to
detect differences between option values at small levels of K.
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when one allows for the possibility of jumps. Indeed, this effect become ever-more

important as the up-front cost is increased.

In these simulations, an increase in λ raises the variance of the stochastic process.

As we noted above, an increase in the variance of the stochastic process tends to

increase the option value of waiting; delaying investment allows the decision maker

to capitalize on such future movements.

In the second set of simulations, we vary the expected value of the natural log

of jump size ( θ), allowing for values ranging from -0.2 to 0.2 (in increments of 0.1).

In this way we consider cases where abrupt movements in prices are negative on

average as well as cases where jumps are positive on average. The results from this

simulation are presented in Figure 5. As in the first set of simulations, we note that

option value of delaying the investment rises as the amount of money that must be

invested increases. Referring back to eq. (24), an increase in θ will raise the drift in

the stochastic process. This induces conflicting effects on the option value of waiting:

on the one hand, larger drift depresses the option value of waiting; on the other, larger

values of θ raise the variance of X, and larger variance increases the option value of

waiting. In the simulations we report here the former effect appears to be somewhat

larger, though the net effect is small. Evidently, the average jump value exerts a less

significant influence on the value of delaying investment than does the potential for

a jump in the first instance.

The third set of simulations we consider varies the standard deviation of the jump
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size (δ); here we consider values ranging from 0.5 to 1.5, in increments of 0.25. Results

from these simulations are presented in Figure 6. As noted above, raising the variance

of the jump size pushes up the variance of the stochastic variable X, which induces

an increase in the option value of waiting. Interestingly, while this effect is small

when δ < 1, it becomes more pronounced when δ > 1. That is, while the option value

of waiting is not particularly responsive to changes in the variance of jump size at

smaller levels of that variance, the impact upon option value becomes significantly

more pronounced when the variance of the jump size increases above unity. Indeed,

variations in the potential size of the jump play an ever-larger role as the amount of

money that must be invested increases. Again, this seems intuitive: when prices are

subject to possible jumps with particularly large variation, the impact on the value of

waiting increases to an ever-larger degree – generating an increasing motive to delay.

That is, greater variation in jump sizes make waiting more attractive, and hence raise

the option value at the optimal investment time.

6 Discussion

In this study we investigated the price of solar renewable energy certificates (SRECs)

in New Jersey – production credits awarded to owners of grid-connected solar PV

systems – allowing for the potential presence of jumps and time-varying volatility.

Our results point to the importance of both of these features in modeling SREC

price returns. In addition to providing a statistically important improvement in ex-
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planatory power of the empirical model, our results allow us to simulate the implied

probability that at least one jump would occur in any given month. Following this

approach, we developed implied jump probabilities for price returns for SRECs, as

well as natural gas and electricity price returns. Our results point to the consistently

important role of jumps in both SRECs and electricity prices, but less so for natural

gas prices. Jumps in SRECs appear to have been of particular significance between

late 2011 and early 2013, a period when electricity prices in New Jersey were particu-

larly high – presumably providing heightened incentives for homeowners to invest in

rooftop solar. Two important factors that distinguish SREC and natural gas markets

are the relative thickness of the market and its maturity. Natural gas markets are

commonly thought to be quite thick and mature, whereas SREC markets have been

in place for a much shorter period, and there are far fewer suppliers of solar projects.

This points to the potentially important role of market structure in driving fat tails

in price returns.23

The rapid growth in solar PV capacity has been driven by the falling price of

installing PV and the implementation of public policies (Nemet, 2019). Even so,

rooftop solar panel installations are a non-trivial expense to the homeowner; Dastrup

et al. (2012) estimate the cost to be on the order of 3-4 % of the home value. Perhaps

because of this feature, Mamkhezri et al. (2020, p. 178) have argued that “there is a

23 Of course, market structure can exert an important influence on price levels – either by
allowing sellers to charge higher prices or by allowing sellers to capitalize on cost reductions, for
example through scale economies (Gillingham et al., 2016). Our point is that more concentrated
markets may be more susceptible to the influence of unexpected events that could cause dramatic
changes in prices.
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diminishing return in support for [r]ooftop solar.” As we noted above, the presence of

uncertainty can retard investment, particularly in projects with largely irreversible up-

front investments such as rooftop solar installations. The obvious alternative would be

a large-scale solar farm; but the private incentive to undertake such a large investment

also depends importantly on the option value of waiting to invest. This delaying effect

is larger the larger is the variation in the stochastic element of concern (here, SREC

prices). Importantly, the presence of jumps mimics an increase in variability. As such,

our finding that both jumps and time-varying price volatility provide a statistically

important explanation of the pattern in SREC prices is of some concern, as there is

reason to fear these effects will increase the option value of waiting – and thereby

retard the rate of investment in solar energy. The upshot is that development of solar

farms and similar investments are likely to occur at a somewhat slower pace than one

might prefer – slowing the energy transition.

This effect is reminiscent of the potential delay in investment that arises when

learning-by-doing effects are important (van Benthem et al., 2008). When learning-by-

doing effects are present, private decision-makers undervalue the potential future ben-

efits associated with present actions, i.e. they overweight current effects. In contrast,

when investments the option value of waiting induces delayed investment, decision-

makers see increased present gains in part because of the desire to capture potential

future gains that might arise if jumps occur.
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Figure 1: Time series of price returns

(a) SREC (b) Natural gas

(c) Electricity

Source: Authors’ calculations, based on data from
(a) https://njcleanenergy.com/renewable-energy/project-activity-reports/srec-pricing/srec-pricing-archive;
(b) https://www.eia.gov/dnav/ng/ng pri fut s1 d.htm;
(c) https://www.eia.gov/electricity/wholesale/.
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Figure 2: Quantile–quantile plots

(a) SREC (b) Natural gas

(c) Electricity

Source: Authors’ calculations, based on data from
(a) https://njcleanenergy.com/renewable-energy/project-activity-reports/srec-pricing/srec-pricing-archive;
(b) https://www.eia.gov/dnav/ng/ng pri fut s1 d.htm;
(c) https://www.eia.gov/electricity/wholesale/.
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Figure 3: Fitted probabilities based on the Jump Diffusion model results

(a) SREC (b) Natural gas

(c) Electricity

Source: Authors’ calculations, based on results from Table 2.
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Figure 4: The impact of jump probability upon the option value of waiting.
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Figure 5: The impact of jump mean upon the option value of waiting.
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Figure 6: The impact of jump variance upon the option value of waiting.
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Table 1: Summary Statistics: Solar Price Returns

Variable Solar Returns Natural Gas Returns Electricity Returns

Sample Range
Start Aug 01, 2009 Aug 01, 2009 Aug 01, 2009
End Nov 30, 2015 Nov 30, 2015 Nov 30, 2015

Summary Statistics
Mean 0.0648 -0.00029 -0.0003
Median -0.0014 0.00000 0.00000
Minimum -0.8867 -0.27844 -1.6136
Maximum 5.7102 0.39007 1.1624
Variance 0.2137 0.00166 0.0471
Std. Dev. 0.4623 0.04071 0.2171

Coeff. of Variation 713.6 -14,172.5 -84,591.0
Skewness 4.1873 1.11170 -0.3023
Kurtosis 29.4956 20.22889 7.6107

n 2099 1599 1606

Test of Normality
Kolmogoro Smirnov 0.2508 0.1133 0.1017

p-value <0.01 <0.01 <0.01

Unit Root Test
Modified Dickey Fuller -4.806 -4.909 -4.446
1% critical-value† -3.48 -3.48 -3.48

Lags 20 23 24

Note: Statistics are based on a sample of daily observations. Solar returns are based
on SREC prices; natural gas returns based on Henry Hub spot prices; and electricity
returns are based on PJM prices.
†: Critical values are based on Elliot et al. (1996).
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Table 3: Likelihood Ratio Test Results

Variable LRPD,JD LRPD,GPD LRJD,GJD LRGPD,GJD

Solar Credits (SREC ) 2539.02 1714.60 570.62 1395.04
(0.000) (0.000) (0.000) (0.000)

Natural Gas (HH ) 812.45 999.34 254.05 67.16
(0.000) (0.000) (0.000) (0.000)

Electricity (PJM ) 540.64 634.21 246.59 153.02
(0.000) (0.000) (0.000) (0.000)

Note: Based on a sample of 2009 observations. p-values are given in the
parentheses.
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