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Abstract

In this paper, I combine data on incidents associated with rail transportation of crude oil and
detailed data on rail shipments to appraise the relation between increased use of rail to trans-
port crude oil and the risk of safety incidents associated with those shipments. I find a positive
link between the accumulation of minor incidents and the frequency of serious incidents, and
a positive relation between increased rail shipments of crude oil and the occurrence of minor
incidents. I also find that increased shipments are associated with a rightward shift in the dis-
tribution of economic damages associated with these shipments; the implied marginal impact
of an additional 1,000 rail cars carrying oil between two states in a given month is $1,925. In
addition, I find larger average effects associated with states that represent the greatest source
of tight oil production.
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1 INTRODUCTION

Within the past ten years, widespread use of new extractive technologies, such as 3-D imaging,

horizontal drilling and hydraulic fracturing, has greatly expanded US oil production. What was

fairly recently regarded as a sunset industry has witnessed a renaissance, with production levels

approaching historic highs in 2014. While this increase in production created substantial net ben-

efits in the form of increased domestic producer surplus, it also presented logistical challenges

(Transportation Research Board, 2017). Much of the new production has occured in new regions;

as a consequence, these production basins are not well serviced by existing oil pipelines; con-

sequently, to deliver their product to market firms have increasingly turned to rail as a mode of

transport.1 In turn, this has lead to concerns related to safety: the concern is that the increased

shipments of oil by rail may lead to a greater risk of accidents, with related concerns for damages.

These concerns are underscored by the tragic derailment on 6 July, 2013 of a freight train carry-

ing crude oil in the Quebec town of Lac-Mégantic. The derailment killed 47 people, spilled over

one million gallons of crude oil, and caused widespread destruction; estimated damages exceeded

$100,000,000.

Horrific as this event was, it was not singular, nor was 2013 a unique year: statistics com-

piled by the U.S. Department of transportation point to a steady stream of train derailments in

the U.S. between 2009 and 2014, with corresponding increases in damages. These patterns are

particularly noteworthy in light of recent trends in U.S. tight oil production, particularly from the

Bakken play (which was the source of the crude on the train that derailed in Quebec).

Figure 1 offers a feel for recent trends in serious rail incidents.2 The figure compares

all serious events for each quarter between 2009 and 2014 related to all shipments (depicted as

1 While building new pipelines is a potential resolution to the issue of insufficient takeaway capacity, there are
important cost considerations: new pipelines are costly, and there are important regulatory obstacles to be overcome.
In addition, the uncertainty associated with the evolution of crude prices induces an option value associated with
delaying investment (Covert and Kellogg, 2017).

2 Publicly available data on rail incidents is provided by the Pipeline and Hazardous Materials Safety Admin-
istration, the US governmental authority responsible for regulating rail shipments of crude oil. A subset of these
incidents are referred to as “serious;” this category is reserved for events where substantial costs are incurred as a
result of the event, or where there are serious injuries or fatalities.



circles) against shipments of crude oil (depicted as diamonds, and connected by the dashed line).

Two patterns emerge. First, the general pattern of serious incidents did not rise over this six year

horizon. Second, there was an increasing tendency for serious incidents associated with crude oil

shipments: There was only one serious incident prior to the middle of 2011, while serious incidents

occurred in every quarter but one after the middle of 2013 – with three quarters exhibiting multiple

serious incidents.

Indeed, in response to the apparent heightened risk of shipping oil by rail, the US Depart-

ment of Transportation (DOT) adopted a new rule governing rail shipments of oil; this rule took

effect in July 2015. Trains with a continuous block of at least 20 cars loaded with a flammable liq-

uid, or trains with at least 35 such cars, are defined as “high-hazard flammable trains” (HHFT); any

tank cars constructed after September 2015 that are used in HHFTs must now meet a tougher stan-

dard.3 Trains with 70 or more cars carrying flammable liquids are required to have in a functioning

two-way end-of-train device or a distributed power braking system. In addition, a maximum speed

of 50 miles per hour is now imposed on all HHFT; if such a train includes any cars that fail to meet

the 117 standard, the speed limit is 40 miles per hour. The above observations, as well as the policy

response they engendered, point to the importance of understanding the risks associated with rail

shipments.

Such an empirical undertaking is complicated by the relative rarity of large scale events.

Similar considerations apply in other situations, where high-consequence events are uncommon.4

Examples include meltdowns at nuclear power plants (David et al., 1996; Escobar Rangel and

Lévêque, 2014) or maritime disasters (Edwards and Kauffman, 2016). One promising approach in

these settings is to focus on lesser events that can be thought of as precursors to disasters.5 I adopt

3 This new standard, referred to as DOT 117, requires rail cars include a 9/16 inch tank shell, 11 gauge jacket,
1/2 inch full-height head shield, thermal protection, and improved pressure relief valves and bottom outlet valves.

4 An additional issue that can arise in such situations is the difficulty of framing a suitable model to predict
the rare event. Indded, Ord et al. (2010, p. 203) note that “any scientific risk assessment is only able to give us
the the probability of a hazard occurring conditioned on the correctness of [the risk assessment’s] main argument.”
The approach I propose below is subject to this qualification. But the authors also suggest that it may be sufficient
to consider an “adequate” model, as opposed to a correct one, which I believe is a reasonable interpretation of my
approach.

5 Examples include unplanned outages, or “scrams,” at nuclear power plants (David et al., 1996; Hausman,
2014) or deficiencies during maritime safety inspections (Edwards and Kauffman, 2016). Taking such an approach
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similar two-pronged approach in this paper.The first step is to establish an empirical link between

the prevalence of lesser incidents and the probability of a more serious incident occurring.6 I then

establish a link between various measures of rail activity and the prevalence of minor incidents.

My empirical model uses data from the Department of Transportation. This data includes monthly

observations on trail traffic between January 1, 2009 and December 31, 2014 (including the number

of carloads of various commodities shipped, associated weight of those shipments, and miles the

shipments traveled) as well as information on safety incidents associated with these shipments.

I find a statistically important link between the number of cars containing crude oil shipped

by rail in a given month and the distribution of incidents; in particular, increases in shipments are

associated with a rightward-sift in the distribution. I also find a statistically important link between

the occurrence of minor incidents on shipments between a given state pair in the preceding three

months and the likelihood of a serious incident occurring on a shipment between that state pair in a

particular month. Combining these two results yields the conclusion that crude by rail deliveries are

linked to the prevalence of serious incidents. I then consider a variety of alternative interpretations,

including the total volume of shipments and multiple measures of rail activity; the central theme

that emerges is the importance of crude deliveries. In addition, I find that increased crude deliveries

between a given state pair in a given month imply a rightward shift in the distribution of dollar

damages from spills. The implied marginal impact of an additional 1,000 rail cars carrying oil

between two states in a given month is estimated as $1,925. These various effects are noticeably

more important in states where recent increases in oil production – mainly associated with the

deployment of unconventional techniques – has been most pronounced.

The remainder of the paper is organized as follows. In section 2, I discuss the data used

in my analysis. I describe my empirical strategy in section 3. In section 4, I discuss the results. I

to appraising safety at nuclear power plants, David et al. (1996) identify a precautionary affect that followed in the
aftermath of the Three Mile Island incident, while Hausman (2014) identifies the role played by deregulation of
electricity markets. Gallagher (2014) demonstrates a link between TV coverage of flooding that impacts nearby areas
upon homeowner uptake of insurance; because the floods in question have small or no direct impact on the homeowners
in question, the media coverage is akin to a more common but less impactful signals.

6 Transportation Research Board (2017, p. 69) argue that lesser incidents may “be an indicator of safety risks
not being properly managed.”
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offer concluding remarks in Section 5.

2 DATA

The data I use in this endeavor comes from two divisions in the Department of Transportation

(DOT).

2.1 Incident Data

Information on rail incidents are drawn from the Pipeline and Hazardous Material Safety Admin-

istration (PHMSA) website. These data list the date, location and shipping source of each incident,

along with information on the amount of materials released and costs associated with the incident,

for all shipments over the selected time frame. I use information on incidents occurring between 1

January 2009 and 31 December 2014. Incidents can reflect minor occurrences, such as small leaks,

or major events such as train derailments. In addition to the information described above, there is

an indicator variable that identifies “serious incidents.”7 From this database, I extracted all records

of incidents involving crude oil shipments.

Table 1 provides a summary overview of this data. The table is split into two parts. Part A,

the top panel, summarizes the data on serious incidents involving crude oil shipments, while part B,

the bottom panel, summarizes the data on minor incidents involving crude oil shipments. For each

part, I show the fraction of weeks between 2009 and 2015 in which an event was observed; minor

events were about 7 times as common – happening in roughly 50% of the weeks, while serious

incidents occurred in about 7% of the weeks. For serious incidents, I present information on the

period of time between events; as minor incidents were substantially more common I focus on the

number of events in those weeks where an incident did occur. For each panel, I show the average

7 PHMSA defines a serious incident as involving “a fatality or major injury caused by the release of a hazardous
material, the evacuation of 25 or more persons as a result of release of a hazardous material or exposure to fire, a
release or exposure to fire which results in the closure of a major transportation artery, the alteration of an aircraft
flight plan or operation, the release of radioactive materials from Type B packaging, the release of over 11.9 gallons
or 88.2 pounds of a severe marine pollutant, or the release of a bulk quantity (over 119 gallons or 882 pounds) of a
hazardous material.” See http://www.phmsa.dot.gov/resources/glossary#S.
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value, the standard deviation of that value, the median value, and the skewness of the sample. On

average, just over 13 weeks passed between serious incidents. This data is sharply asymmetric,

with a large standard deviation and a skewness value well above 0 (the level associated with a

symmetrically distributed sample). The median time between serious incidents is much smaller

than the mean value, again indicating a distribution skewed towards larger values. For minor

incidents, the data are a bit less skewed, with a median value that is much closer to the mean.

In those weeks where an incident occurred, there were typically about two incidents. Combined

with the information on the frequency of weeks with events, this indicates the number of minor

incidents was similar to the number of weeks in the sample.

A visualization of the incident data is conveyed in Figure 2. The left panel of the figure

depicts serious incidents involving crude oil shipments; here I plot the week in which the incident

occurred against the number of weeks between major incidents (shown on the y-axis). The take-

away message here is that serious incidents became more common over time thru the first half of

2014, with the time between such incidents falling from several months to less than one month. In

the right panel, I plot the number of minor incidents per week. Here too, the frequency of incidents

also rose through the middle of 2014. Put together, this graphic points towards a negative relation

between the number of minor incidents and the time between serious incidents; it also suggests a

link between accumulating minor incidents and the prevalence of serious events.8

2.2 Rail Traffic

I combine the data on incidents with information on rail shipments, taken from DOT “waybill”

data. For any rail shipment, the waybill lists nearly 200 pieces of information. Included in this list

are the following: state, FIPS and zip code of shipment origin and destination; shipment contents

(listed as a commodity, identified both by name and numeric code); number of cars containing the

commodity; date of shipment; and the waybill number. I have data on all rail shipments in the US

8 One way to interpret this last point is that minor incidents are harbingers of more serious events (Transportation
Research Board, 2017). This feature occurs in other situations involving potential catastrophes, such as major adverse
events at nuclear power plants (Escobar Rangel and Lévêque, 2014).
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between 1 January 2009 and 31 December 2014.9 Out of this very large dataset I identified all

records involving crude oil shipments.

Most crude oil shipments originate in “PADD 2”, which includes North Dakota, and “PADD

3,” which includes Texas.10 These are large oil producing states where important basins of pro-

duction are located in remote areas, commonly poorly served by existing pipeline infrastructure.

Figure 3 highlights the relative isolation of these oil fields. It is apparent that several oil producing

areas (indicated as cross-hatched areas) are not proximate to the existing pipeline infrastructure;

of particular importance here is the isolation of two major oil producing basins: the Bakken, in

North Dakota, and the Permian, in West Texas. By contrast, these regions are reasonably close to

a number of rail lines. This observation underscores the emerging significance of the rail mode of

transportation for crude oil. As a result, shipments of crude oil by rail expanded relatively rapidly

between 2010 and 2012, and the prevalence of incidents involving rail shipments of crude oil also

increased sharply – as illustrated in Figure 4. At the same time, oil by rail shipments started taking

up greater percentages of the cars carried in a given train, travelled longer distances, and went

through an increasing number of US counties (Transportation Research Board, 2017). One impli-

cation of these trends was that an increasing number of people felt exposed to risks associated with

serious incidents, which in turn lead to increased political pressure to raise regulatory oversight of

rail shipments of oil (Molinski, 2015).

Table 2 provides summary information on crude oil shipments by rail from this sample

period. I offer evidence using three measures of activity: the number of rail cars carrying crude

oil, the number of miles oil is transported and the weight of product in cars carrying crude oil. The

third measure is not a simple transformation of the first, as some cars dedicated to transporting

crude are likely to be empty (a rail car carrying crude from the oil patch to a refinery will typically

be empty on the return run back to the oil patch). As such, these measures provide information on

9 This data is confidential and proprietary; it was provided to the NBER working group on oil infrastruc-
ture. A non-confidential subset of the waybill records is available from the Surface Transportation Board (see
https://www.stb.gov/STB/industry/econ waybill.html); this subset comprises roughly 2% of all waybills.

10 The acronym PADD stands for “Petroleum Administration for Defense District”; its use originated during
World War II. The US Energy Information Administration provides data on oil movements by various modes from
each PADD; see https://www.eia.gov/dnav/pet/PET_MOVE_RAIL_A_EPC0_RAIL_MBBL_M.htm.
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different pathways for oil shipments to lead to potential incidents. One notion is that oil shipments

contribute to incidents by increasing congestion on rail lines; this idea would be related to the

number of cars transported during a given period of time, perhaps combined with the distance

traveled. Alternatively, oil shipments could increase wear and tear on the rail lines; this effect

would be related to the combined weight of the shipment.11 Evidently the role of rail as a mode for

transporting oil increased dramatically in importance during the sample period, with the number

of annual shipments increasing by a factor of roughly 15 between 2009 and 2014. Also, each of

the three measures of activity increasing over the six year period: both the number of rail cars

carrying crude oil and the miles travelled increased by a factor of roughly 20. The weight of crude

oil shipments increased even more dramatically during this period; the combined weight of crude

oil conveyed by rail increased by a factor of over 150, while the average weight per shipment

increased by roughly ten-fold.

Figure 5 fleshes out the relation between rail activity and the prevalence of serious inci-

dents; Figure 6 provides complementary information for minor incidents. In these figures, all

variables are shown as percentage of total shipments associated with crude oil shipments; both fig-

ures display the quarterly average of all rail shipments associated with crude deliveries, using three

measures of rail activity (number of cars shipped, miles travelled, and weight conveyed). Onto

these plots, Figure 5 overlays the fraction of serious events associated with crude shipments, while

Figure 6 overlays the fraction of minor incidents associated with crude shipments. A correlation

between the three measures of rail activity and the frequency of incidents is apparent, particularly

for mileage traveled and weight conveyed; this relation is particularly clear for minor incidents.

These figures anticipate results from a more formal analysis, which I turn to next.

11 Vartabedian (2015) notes that “[t]rack problems were blamed on 59% of the crashes, more than double the overall
rate for freight train accidents.” Similarly, Brown (2017) notes that government inspectors found thousands of safety
defects on rail lines used to haul volatile crude oil, including worn rails; broken, loose; and cracked steel bars.
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3 EMPIRICAL STRATEGY

My empirical approach is to trace out a connection between rail shipments of crude oil and inci-

dents. Because there are relatively few major incidents involving crude oil shipments, I undertake

this analysis in two steps. In the first step, I tie the occurrence of serious incidents to the prepon-

derance of lesser incidents that precede the major event. In the second step, I connect the number

of rail cars shipped to the number of minor incidents.

3.1 Step 1: Modeling Serious Incidents

I use two approaches in the first part of the analysis. The first of these approaches uses survival

analysis, which makes use of “time to failure” model. Here, I focus on the number of weeks

between serious incidents, regarding the occurrence of such an incident as the “failure.” The ex-

planatory variable in this model is the accumulated number of minor incidents during the period

between the preceding serious event and the current serious event. Analysis of failure times pro-

ceeds by modeling the hazard rate as a function of a set of explanatory variables.

Survival models are comprised of two parts: a baseline hazard function λ0(t), which de-

scribes the way the risk an event occurs within a particular period of time (given baseline levels

of the relevant covariates), and the effect of the covariates upon the hazard.12 In the application

at hand, the “event” corresponds to a serious incident, and the covariate of interest is the number

of minor incidents that have occurred since the last event took place. Two alternative models for

analyzing failure times have commonly been utilized.

The first uses the Cox semi-parametric proportional hazards model. In this model, the

probability that the number of periods between serious incidents equals some value t is:

F(t) = 1− exp
(
−
∫ t

0
λ0(s)eβxdu

)
,

where x is the accumulated number of minor incidents and β is the parameter of interest. The

12 For a discussion of survival time models, see Lawless (2003).
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second model assumes a specific functional form for the baseline hazard function. I discuss two

such models below: the Weibull proportional hazards model and the exponential proportional haz-

ards model. Under the first, the distribution of failure times follows a Weibull density function,

which implies the hazard rate changes monotonically over time. Under the second, the hazard rate

is constant. This restriction may be tested by comparing the shape parameter p, discussed below,

with 1.

The second approach I consider treats each shipment as an independent observation, where

there is a risk of a major incident occurring. Here I model the risk using a Logit framework, where

I conjecture that the risk of a serious incident is related to the accumulation of minor incidents in

the recent past. I investigate four notions of “recent past”, corresponding to three-month periods

(i.e., the past 3 months, the past 6 months, the past 9 months and the past 12 months).

3.2 Step 2: Modeling Minor Incidents

The goal in the second step of my analysis is to explain the number of minor events associated

with a particular combination of originating and terminating states, during a particular month.

The key explanatory variable here is the number of rail car shipments between that state pair

in that month. There are likely to be geographically idiosyncratic features at play, for example,

because the potential pathways for shipments are exogenously fixed in advance of the sample

period. Accordingly, I use a fixed effects approach, where the state pairs form the basis for these

fixed effects.

The left-side variable in this step is strongly skewed, which suggests that ordinary least

squares is ill-advised. Accordingly, I base this part of the analysis on models emanating from

the literature on count data. Two models have received considerable attention in this vein: the

Poisson and Negative Binomial models (Cameron and Trivedi, 2005). While I discuss results

using each approach, I mainly focus on the Negative Binomial regression model. Related to this

line of inquiry, I also explore the relation between the number of rail cars shipped between a given

pair of states in a given month and the magnitude of harm arising from an event, as measured by

9



the dollar harm associated with the event.13

This second line of investigation requires combining the two datasources described in the

previous section. To this end, the data was first aggregated by month, for each pair of originat-

ing and destination states. I then merged information over space and time. Thus, an individual

observation represents for each month and originating-destination state pairs: the number of cars

in which oil is shipped, the number of incidents that occurred, the amount of oil spilled in any

incidents that occurred, and the dollar damages associated with any incidents. For many months in

the sample, oil is shipped with out incident (so that the last three variables are identically equal to

zero). Because not all states are associated with oil shipments in any particular month, the panel

is unbalanced; addressing this imbalance is an important motivation for including state-level fixed

effects.

4 RESULTS

I now turn to a discussion of the results.

4.1 The Role of Minor Incidents in Explaining Serious Incidents

The first part of my analysis evaluates the link between minor incidents and serious incidents. The

hypothesis of interest is that the accumulation of minor incidents can explain the tendency for

serious incidents to occur. I evaluate this possibility by using three time to failure models (where

the “failure time” is measured by the time that elapses between serious incidents), as well as a

Logit framework.

Failure Time Analysis

The results from the time-to-failure analysis are collected in Table 3. The second column presents

results based on the exponential hazard model, the third column lists results from the Weibull

13 This harm can come from five sources: the value of spilled oil, the cost associated with damaged capital (such
as rail cars), the damages borne by property owners near the event location, the costs associated with any emergency
responders, and any costs associated with remediation.
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model, and the fourth column gives results from the Cox proportional hazard model. In each case,

a negative estimated coefficient indicates that increases in the number of minor incidents shifts the

hazard function governing the probability a serious incident will occur in the current period to the

left (i.e., it raises the probability of a serious incident in the near future). For each of the three

survival time models, the estimated coefficient on the accumulated number of minor incidents is

negative; this effect is significant at the 10% level for the two parametric models and at the 1%

level in the Cox semi-parametric model.14

Logit Analysis

The results from the Logit analysis are collected in Table 4. I report results from four regressions,

based on the various interpretations of “recent past”. Regression (1), reported in the second col-

umn, includes the past 3, 6, 9 and 12 months; regression (2) includes the past 3, 6 and 9 months;

regression (3) includes the past 3 and 6 months; and regression four only includes the past 3

months. For each of these notions, I tabulated the number of minor incidents during the period

in question for each state pair, and used that variable as a regressor. The left-side variable is an

indicator taking the value 1 if a serious incident is observed in the particular state pair in the partic-

ular month, and zero otherwise. The results consistently point to the preceding 3 months as having

explanatory value: increases in the number of minor incidents in that period exert a statistically

important effect on the probability of a serious incident; in ballpark terms, each additional 3 minor

incidents doubles the chance of a serious incident. None of the other time frames appear to exert

an important effect.

Based on these results, I conclude there is empirical evidence that minor events can predict

the potential for serious incidents.

14 As I noted above, the empirical validity of the exponential model can be assessed by comparing the shape
parameter p to 1 in the Weibull regression; the estimated parameter here is 0.905, which does not statistically differ
from 1.
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4.2 The Role of Rail Traffic in Explaining Minor Incidents

I now turn to an appraisal of the impact of the volume of rail traffic upon the occurrence of minor

incidents, which the results from the preceding sub-section suggest is a marker for increased risk

of serious incidents. Table 5 lists results from six regressions tying the volume of rail traffic in

crude oil shipments to minor incidents. These results are based on two models of count data –

the Poisson model and the Negative Binomial model.15 For each count model, I present results

from three regressions that allow for originating and terminating state-pair fixed effects. The first

regression only includes a variable measuring rail traffic (thousands of cars carrying crude oil).

The second regression for each model also allows for seasonal fixed effects, including an indica-

tor variable taking the value 1 during the months of November, December, January and February.

The third regression allows for idiosyncratic monthly effects, as reflected in the indicator variables

Dmn, where n = 1 refers to January, n = 2 refers to February, and so on. These two variations

are designed to control for possible weather-related effects. Including these controls is motivated

by concerns that rail shipments might be exposed to greater risk during cold months, for example

because of contraction in steel wheels or rail lines (Lowy, 2015). Alternatively, cargo contents

might be subject to contraction during colder months, which might facilitate “sloshing,” the con-

cern being that if the rail car starts to rock from side to side this energy might induce a pattern of

waves within the container, with the momentum associated with these waves then exacerbating the

tendency for the car to rock, potentially leading to derailment.

In each regression, the key parameter of interest is the coefficient on the number of cars

carrying crude oil between a particular pair of states in a particular month, measured in thousands

of cars. I note that the estimated coefficient on this variable is positive and statistically significant

in each of the regressions, with broadly similar values (ranging from 0.228 to 0.322). In general,

the Negative Binomial model points to a more substantial effect associated with rail traffic.16 I also

15 All regressions were run in STATA, using the fixed effects option in the XT package. Robust standard errors
were computed using the “oim” (information matrix) option in the Poisson regressions, and the ‘r’ (robust) option in
the Negative Binomial regressions.

16 A test of the appropriateness of the Poisson model is available in a version of the Negative Binomial model
without fixed effects. For these data, such a test points strongly to the preferability of the Negative Binomial model.
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note that allowing for temporal effects has little effect upon the estimated role of rail traffic: none

of the time-related indicator variables exerts a significant effect.

In the results reported in this Table, the estimates indicate that an additional serious incident

is likely to occur for each additional 3-4,000 rail cars shipping oil between a particular pair of states

in a particular month. Referring back to Table 2, the number of rail cars carrying oil increased by

roughly 40,000 between 2013 and 2014, which suggests this estimated impact is non-trivial.

Before proceeding to a discussion of the consequences of spills, I pause briefly to consider

the fixed effects. Upon retrieving the estimated residuals from a regression from Table 5, it is

straightforward to back out the state-pair fixed effects. Doing so, one finds that the largest five fixed

effects are all associated with crude oil shipments out of North Dakota. In light of the importance

of this state as a source of rail shipments of crude oil, this result suggests an intriguing possibility:

that increased rail traffic might accelerate depreciation of certain rail routes, increasing the risk of

worrisome incidents. I discuss this idea in greater detail below.

4.3 Consequences

I now turn to an evaluation of the relation between rail traffic and the consequences of spills.

Table 6 contains the relevant results. Here, I list results from five regressions. The first of these is

a fixed effects regressions of the relation between rail traffic and the economic damages resulting

from an incident, using a Negative Binomial mode; this regression model allows me to identify

the marginal impact of an increase in rail traffic on expected damages. The second set of results

are based on a quantile regression approach; this approach allows me to ascertain the impact of

additional rail traffic on the largest likely damages.

Negative Binomial Analysis

As above, the key parameter of interest is the coefficient on the number of cars carrying crude

oil between a particular pair of states in a particular month, measured in thousands of cars. Again,

this coefficient is positive and statistically significant, indicating that increased rail traffic shifts the
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distribution governing damages to the right – thereby increasing expected harm.17

These results can be used to infer the expected impact of a one unit increase in rail traffic.

The expected value of total economic damages in the Negative Binomial model is

E(D) = exp(β̂ x),

where E(D) is expectations operator applied to total economic damages, x is average rail traffic,

and β̂ is the estimated coefficient on rail traffic (here, 0.571). Thus, a one-unit increase in average

rail traffic will raise expected damages by βE(D). In the sub-sample used for the results reported

in Table 6, the average value of dollar damages is $3,375; accordingly, the predicted marginal

impact of an increase in rail traffic, starting from the average value, is $1,925.

It is worth noting that the approach I employ in this part of the analysis implies a focus

on expected effects, which is to say it implicitly assumes risk neutrality on the part of the relevant

decision-maker. There are reasons to be skeptical of such an assumption. One might well argue

that society exhibits some risk aversion, particularly in the face of low-risk, high-consequence

events (Laes et al., 2011). Indeed, Krupnick et al. (1993, p. 1275) that the tendency for an implicit

assumption of risk neutrality to mis-assess the ex ante damages society might place on environ-

mental catastrophes the smaller is the probability of the event, or the larger are the consequences of

such an event; both these attributes seem apropos to the problem at hand. Likewise, Sunstein and

Zeckhauser (2011) argue that agents are likely to overweight low probability events, particularly

when large externalities result – as is plainly the case with serious rail events such as derailments.

And the implicit assumption that one can view decision-makers as making choices consisted with

an expected utility framework is far from innocuous, particularly in the context of low-probability,

high-consequence events (Machina, 1982). Altogether, these points suggest that the analysis I pre-

sented above might underestimate the true expected social cost associated with the risk of a serious

17 I note that the sample included a small number of observations for which there was no information relating
to dollar damages. Accordingly, these observations were dropped from the regression, resulting in a slightly smaller
sample. I also considered the potential role for monthly fixed effects; these results were not substantially different
from those reported in Table 6.
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incident associated with shipping oil by rail.18

Quantile Regression Analysis

The second set of results are based on a quantile regression approach. Here, I evaluated the re-

lation between total economic costs and rail traffic (in thousands of cars) along with an indicator

variable for winter months, for four percentiles: 80%, 85%, 90% and 95%.19 These results give

a feel for the impact of rail traffic upon costs as one moves into the tail of the distribution over

costs. The key points to be gleaned from these regressions are that rail traffic becomes ever more

important, in magnitude, as one moves from left to right in the distribution; these effects are also

statistically at the 5% level in the 85th, 90th and 95th percentiles, and at the 10% level in the 80th

percentile. Altogether, these results paint a picture wherein increased rail traffic pushes the distri-

bution of costs to the right, with the most substantial impacts arising in the tail of the distribution;

on balance, these results are qualitatively consistent with the Negative Binomial regression results

reported in the second column.

4.4 Robustness Checks and Extensions

In this subsection, I discuss a variety of robustness checks and extensions.

The preceding analysis supposed that the volume of rail traffic associated with crude oil

shipments was directly related to the preponderance of minor incidents. Much of this rail traffic

emanates from North Dakota, so an alternative interpretation might be that it is the flow of traffic

from North Dakota that is at issue. If so, other commodities that are important sources of rail

traffic would also be correlated with the preponderance of minor incidents. An obvious example

here would be wheat (Bushnell et al., 2017). An alternative argument might be that it is the total

volume of rail traffic that influences minor incidents. To evaluate these alternative conjectures,

I revisit the Negative Binomial regression analysis from Table 5, now including two additional

18 When these large consequence, low probability events lead to spatial correlated externalities, as seems likely
with train derailments, inefficiently low levels of private insurance are likely to be undertaken (Gollier, 2005). On the
other hand, Sunstein and Zeckhauser (2011) note that such an environment can readily lead society to overreact to the
potential for large consequence, low probability events, for example by enacting overly burdensome regulations.

19 I use these percentiles because positive damages only appear above the 75th percentile. The total number of
observations are 1497, as each of the bins has 5% of the observations, each contains 75 observations.
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explanatory variables: the number of cars shipping wheat in a given month between a particular

state pair, and the total number of rail cars in a given month between a particular state pair (each

measured in thousands). In this alternative specification I retain the variable measuring oil by rail

traffic, as well as the temporal dummy variables.

These results are contained in Table 7. There are three takeaway messages here. First,

both the volume of wheat shipments and the total volume of traffic are irrelevant in explaining the

prevalence of minor incidents. Second, as before there is no indication of monthly effects, nor

does the dummy variable for winter months exert much influence. Third, in all specifications the

statistical importance of crude oil shipments remains (although the significance level in each of

regressions 2, 3, 5 and 6 – which include all rail traffic as an explanatory variable – do not quite

reach the 5% level).20 I conclude that the relation identified in Table 5 is not an artifact of using

crude shipments rather than wheat or all shipments.

The second set of robustness results use different measures of rail activity as explanatory

variables to explain the prevalence of minor incidents. These results are collected in Table 8. Here

I investigate the potential role played by distance traveled (measured in million miles) and the

weight of the product transported (measured in million tons). For each of these variables I analyze

three specifications: one including the variable allocated to crude shipments and all shipments

(regression 1 for miles and 4 for weight); one including the variable allocated to crude shipments

and all shipments along with an indicator variable taking the value 1 for winter months and 0

otherwise (regression 2 for miles and 5 for weight); and one including the variable allocated to

crude shipments and all shipments along with 11 indicator variables – one for each month from

January to November (regression 3 for miles and 6 for weight). The key results here are: (i)

there is no indication that time of year influences the prevalence of minor incidents; (ii) total miles

travelled does seem to explain minor incidents, but weight of all commodities does not – suggesting

that combined congestion might matter, but aggregate wear and tear is less important; (iii) in

all specifications, the variable related to crude shipments is statistically important and consistent

20 In the regressions with the dummy variable for winter, the confidence levels are 5.2%; in the regressions with
dummies for each month, the confidence levels are 6.4%.
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across specifications. Altogether, these results indicate that the that the relation identified in Table 5

is not an artifact of using the number of rail cars carrying crude, rather than distance travelled or

weight transported.

I next consider the robustness of the two-step linkage I utilized in the discussion above.

The empirical strategy I laid out is necessitated by the paucity of serious events associated with

crude oil shipment. But there are many serious incidents involving other commodities; perhaps

one might be able to identify a more direct linkage between measures of activity and the tendency

for serious events to occur. I get at this idea with two sets of extensions.

The first set of extensions, reported in Table 9, focus on the possible role played by all

shipments and crude shipments in determining the probability of a serious event. The left side

variable in this set of regressions is an indicator variable taking the value 1 for all month–state pair

observations in which a serious event took place, and 0 otherwise; here I use a Logit approach. The

right-side variables blend together number of cars and miles travelled by defining a variable, “Mil-

lion CarMiles”, that is the multiple of cars and million miles traveled. I investigate two variations,

one where the current values of Million CarMiles for both all shipments and crude shipments is

used, and one where both current and lagged values are used (here I allow for values from once-,

twice- and thrice-lagged months to exert an effect). For both of these frameworks I present two

regressions, one focusing on the variables described above, and one where these variables are

augmented by an indicator variable for winter months. The pattern of results here mimic earlier

results: there is no indication that serious events are more likely to occur in winter months, and

the role of crude shipments is of paramount importance. The second of these observations takes

on added significance here: crude shipments raise the chance of serious events of all shipments,

suggesting a spillover effect. One plausible explanation for such a spillover relates to crowding –

if crude shipments raise the volume of traffic, they could make rail lines more congested, thereby

elevating the chance of a serious event. That the various lagged variables do not seem to influence

the chance of a serious event is consistent with such an interpretation. Finally, the fifth regression

in this table combines the two contemporary measures of CarMiles with the number of minor inci-
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dents for the relevant month – state pair. In light of the results in Table 4, I investigate the impact of

the number of minor incidents in each of the three preceding months. Parallel to the other results

in the Table, I allow for differential effects associated with crude oil shipments and all shipments.

The key point here is that the only statistically important variable in this regression is the number

of minor incidents associated with crude shipments, in the current month.

Results from the second set of extensions in this line of inquiry are presented in Table 10.

As in the last regression of the preceding table, I include the number of rail cars (for both crude

shipments and all shipments) with the number of minor incidents for the relevant month – state

pair as well as each of the three preceding months. Parallel to the results from the earlier tables,

I include the three measures of rail activity (cars, miles, weight); as above, I allow for differential

effects associated with crude oil shipments and all shipments. I present results from five permuta-

tions in this analysis. Regression 1 include current and previous counts of minor incidents for all

shipments shipments, while regression 2 includes current and previous counts of minor incidents

for all shipments and crude shipments. Regression 3 excludes the count variables, focusing on a

comparison of the three measures of rail activity. Regressions 4 and 5 adapt regressions 1 and 2,

respectively, by including the three measures of activity.

Regressions 1 and 2 each reveal a role played by the number of minor incidents in predict-

ing serious events, though only crude incidents are statistically significant when minor incidents

for both all and crude shipments are included. This pattern persists in regressions 4 and 5: again it

is crude incidents that provide explanatory power. Perhaps the most intriguing results in the table

have to do with a comparison of the three measures of activity. First, I note that the distance a com-

modity is shipped appears to not predict the likelihood of a serious event; this holds true in each

of regression 3, 4 and 5. By contrast, in the two regressions where the current and past numbers of

minor crude incidents are excluded (regressions 3 and 4), the number of cars carrying crude plays

a statistically important role. In each of regressions 3, 4 and 5, the weight of crude shipped (but not

weight of all shipments) is statistically important. Interestingly, this role is negative, suggest that

heavier cars are less risky than lighter cars. While this results seems counter-intuitive at first blush,
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there is an explanation. Because crude is shipped as a liquid, it is prone to “sloshing” – if the car

starts to rock from side to side this energy might induce a pattern of waves within the container.

One conjecture is that the momentum associated with these waves can amplify the tendency for

the car to rock, leading to derailment. To the extent that such an explanation holds true, it would

require that there be sufficient free space within the container, which would translate in to less

material – and hence less weight. The negative coefficients on weight of crude shipped might be

evidence in support of this conjecture. By contrast, the variable measuring weight associated with

all shipments combines both liquid and non-liquid material, and so is less likely to be consistent

with the sloshing hypothesis.

The third set of extensions represents a first pass at the potential for depreciation of rail

lines. Here, I add a new explanatory variable – the interaction of origin-destination state pair

with the amount of weight shipped in the particular month, aggregated across all shipments. This

variable provides information on the amount of wear and tear for the particular combination of

space and time. I add this variable to the explanatory variables considered above, namely number

of cars (measured in thousands, for both crude shipments and all shipments), distance travelled

(measured in millions of miles, for both crude shipments and all shipments), and the number

of minor incidents (for both crude shipments and all shipments). The dependent variable is the

indicator variable taking the value 1 when a serious incident occurred in a given month for a

shipment between a particular state pair. As in the earlier analyses, I allow for state-pair fixed

effects. I also include interaction terms between weight and an indicator variable that takes the

value 1 for shipments originating in an area where tight oil production occurs (which I denote as

Dtight), or from the state of Texas (which I denote as Dtight TX); these interaction terms allow

for the possibility that specific deterioration effects can be ascribed to shipments from tight oil

provinces, as some have conjectured might have occurred (Vartabedian, 2015; Brown, 2017). This

exercise is complicated by the fact that there are a large number of potential state pairs, many

of which have limited traffic; I deal with this complication by focusing on those state pairs with
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sufficient volume to facilitate successful conversion of the estimation package.21

I report results from four regressions in Table 11. Regressions 1 and 3 include contem-

poraneous effects only, while regressions 2 and 4 allow for lagged effects from the accumulated

number of minor incidents (for both crude shipments and all shipments). All four regressions in-

clude the variable capturing the interaction between shipped weight and the indicator for states

with tight oil, while regressions 3 and 4 also include the interaction between weight and shipments

from Texas. Four key points emerge. The first three reflect those explanatory variables that are

statistically important in explaining the prevalence of serious incidents, each with a positive effect.

These variables are the volume of crude shipped between a particular state pair in a given month,

the distance travelled by all rail shipments between a particular state pair in a given month, and

the number of minor incidents associated with crude shipments between a particular state pair in

a given month. All other variables are statistically unimportant. The final key point is that the in-

teraction terms relating weight of shipments from the tight oil basins are consistently unimportant.

I conclude from this last point that there is little evidence to support the hypothesis that increased

rail traffic, associated with the increased production tied to the increasing importance of tight oil

plays, has exacerbated depreciation of rail lines.

5 CONCLUSION

My goal in this paper was to assess the relation between crude oil shipments by rail and safety

incidents related to those shipments. Using a two-step procedure, I first confirm a link between

the accumulation of minor incidents and the frequency of serious incidents, with a greater number

of accumulated minor incidents associated with a shorter time between serious incidents; I then

confirm a positive relation between increased rail shipments of crude oil and the occurrence of

21 These regressions were conducted using the STATA package xtlogit. The procedure I followed was to first
use the logit package, identify which of the over 2100 state pairs were retained in the logit regression (i.e., those state
pairs that were not dropped because of insufficient variation), and then use these retained state pairs in the xtlogit
regressions. This yielded 28 state pairs, with roughly one-fourth of these corresponding to shipments from the two
tight oil producing states.
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minor incidents. The preferred specification in the second step allows for state-level fixed effects;

in this context, I find that the largest fixed effects are associated with states that represent the

greatest source of tight oil production in the continental U.S.

These results offer some support for the perception that increased rail deliveries of crude

oil, particularly from locations often associated with the fracking boom, carry an increased risk

of accidents. Indeed, my analysis reveals a positive relation between increased rail deliveries

and economic damages associated with safety incidents. My results imply an expected marginal

impact of $1,925, which can be interpreted as a blend of private costs and some external costs.22

These costs do not include the social costs associated with environmental damages from oil spills,

property damages from major incidents (e.g., resulting from spill-induced fires) and any loss of

life. These aspects arguably comprise the most important external costs associated with any rail

incidents.23

Whether the increase in safety related external costs arising form increased rail traffic is

sufficient to rationalize the extra costs associated with building rail cars to a more exacting safety

standard is a separate issue. This point ties into the broader question of determining appropriate

public policies to deal with potential catastrophes – a thorny question in its own right. For that

matter, it is not clear that the extra external costs associated with increased rail transport exceed

the extra costs associated with other forms of delivery (Molinski, 2015). Indeed, the risk asso-

ciated with pipeline delivery was a prominent feature of the recent protests against the Dakota

Access Pipeline, which would offer an alternative means of transporting crude oil from the Bakken

play.24 Determining the optimal role of rail transport within the portfolio of crude oil transportation

options remains an important focus for future research.

A key element related to the broader policy debate regarding rail standards is the likely

22 The values for reported damages in the dataset reflect the damages from lost product and damaged capital,
both of which are private costs; along with any damages borne by nearby property owners, any costs associated with
emergency responders, and any remediation costs, which are externalities.

23 The costs I have in mind here do not include pollution-related externalities. While these other externalities can
be quite large (Clay et al., 2017), they do not have any bearing on the economic efficiency of the increased rail safety
standards.

24 Herrnstadt and Sweeney (2017) provides evidence that the perceived risk associated with pipelines may be
relatively small.

21



future trajectory of crude oil production in the U.S., particularly in relatively remote areas. While

domestic crude production softened during 2015, it has rebounded more recently, particularly in

the Permian basin of West Texas; indeed, there are indications that domestic crude production

will increase steadily during the foreseeable future.25 An important effect that could impact this

prospective growth is the scope of crude oil delivery infrastructure. Indeed, Agerton and Upton

Jr. (2017) argue that pipeline delivery constraints played a particularly important role in domestic

crude markets in the period near the end of my sample. As such, there are reasons to expect strong

demand for rail as a delivery mode going forward, pointing to the likely future relevance of the

analysis in this paper.

25 The U.S. Energy Administration projects annual growth of 4-5% over the next few years (see https://www.
eia.gov/outlooks/steo/). The International Energy Administration is similarly bullish, opining that “U.S. shale
oil producers will boost their output by 8 million barrels a day between 2010 and 2025” (Ivana Kottasová, 2017). Part
of the push for this increased production comes from the decision to lift the 40-year old ban on exporting crude oil,
which took effect in late 2015 (Brown et al., 2014).
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Figure 1: Serious Incidents, All Shipments vs. Crude Oil Shipments
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Figure 2: Minor Incidents and Time Between Serious Incidents
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Figure 3: Rail and pipeline location, in relation to major oil producing areas

Source: Department of Transportation; Energy Information Administration
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Figure 4: Minor Rail Incidents vs. Number of Railcars Shipping Oil, 2009-2014
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Figure 5: Fraction of Crude Shipments, Serious Rail Incidents vs. Rail Activity, 2009-2014
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Figure 6: Fraction of Crude Shipments, Minor Rail Incidents vs. Rail Activity, 2009-2014
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Table 1: Crude Oil Rail Incidents

A. Serious Incidents

Fraction of weeks Number of weeks between events
with an event Mean Std. Dev. Median Skewness

0.07 13.23 20.34 6.50 3.18

B. Minor Incidents

Fraction of weeks Number of events per week
with an event Mean Std. Dev. Median Skewness

0.50 2.27 1.72 2.00 2.08

31



Table 2: Annual Crude Oil Shipments

rail cars carrying oil distance (thousand miles) weight (thousand tons)
year oil shipments total per shipment total per shipment total per shipment
2009 167 942 5.6 170.8 1.023 1738.1 10.408
2010 294 9554 32.5 375.2 1.276 18613.8 63.312
2011 665 15818 23.8 843.9 1.269 29473.1 44.320
2012 1762 74525 42.3 2096.8 1.190 124203.0 70.490
2013 2508 147940 59 3001.8 1.197 223371.0 89.063
2014 2508 186954 74.5 3242.2 1.293 266733.1 106.353
Total 7904 435708 55.1 9730.7 1.231 664132.1 84.025
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Table 3: Regression Analysis of Time Between Serious Incidents

Regression model

regressor Exponential Weibull Cox
Cumulative number -0.019∗ -0.019∗ -0.025∗∗∗

of minor incidents (0.011) (0.010) (0.009)

constant -2.255∗∗∗ -1.956∗∗∗

(0.504) (0.272)
p 0.905

(0.146)

χ2 statistic 3.101∗ 3.599∗ 7.644∗∗∗

Robust standard errors in parentheses
*: significant at 10%; **: significant at 5%; ***: significant at 1%
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Table 4: Logit Analysis of Serious Incidents

(1) (2) (3) (4)

# minor incidents, past 3 mos. 0.363** 0.363** 0.305* 0.310***
(0.168) (0.165) (0.166) (0.052)

# minor incidents, past 6 mos. -0.218 -0.219 0.003
(0.197) (0.192) (0.092)

# minor incidents, past 9 mos. 0.134 0.141
(0.204) (0.104)

# minor incidents, past 12 mos. 0.005
(0.133)

constant -4.190*** -4.190*** -4.117*** -4.116***
(0.318) (0.314) (0.296) (0.296)

χ2 37.390 36.512 35.834 35.731
Dependent variable: indicator for serious incident
Robust standard errors in parentheses
504 observations
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 5: Regression Analysis of Relation Between Crude Rail Car Shipments and Minor Incidents

Poisson Negative Binomial
Thousand crude cars 0.229*** 0.228*** 0.246*** 0.317*** 0.312*** 0.322***

(0.032) (0.035) (0.035) (0.078) (0.077) (0.082)
Dm1 -0.303 -0.062

(0.532) (0.458)
Dm2 -0.045 0.031

(0.588) (0.453)
Dm3 0.200 0.362

(0.542) (0.404)
Dm4 0.309 0.489

(0.500) (0.391)
Dm5 0.455 0.533

(0.510) (0.390)
Dm6 -0.356 -0.045

(0.515) (0.424)
Dm7 -0.310 -0.041

(0.505) (0.418)
Dm8 -0.082 0.225

(0.416) (0.397)
Dm9 -0.025 0.156

(0.527) (0.408)
Dm10 0.194 0.446

(0.507) (0.387)
Dm11 -0.282 -0.002

(0.461) (0.413)
Winter dummy -0.215 -0.277

(0.222) (0.186)
constant -0.618** -0.527* -0.754*

(0.282) (0.288) (0.413)
χ2 50.007 44.831 185.292 16.420 18.984 22.979
All regressions include fixed effects for origination-destination state pairs
Robust standard errors in parentheses
913 observations
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 6: Analysis of total damages

Negative Percentile regressions
Binomial 80% 85% 90% 95%

Thousand crude cars 0.571*** 480.885* 1017.17** 2109.15*** 3321.45**
(0.080) (274.03) (446.95) (393.99) (1567.7)

Winter dummy -0.272 0.481 0.000 0.000 -1183.39*
(0.204) (1.563) (2.550) (19.935) (681.27)

constant -4.848*** -0.962 -1.017 -2.109 1180.07**
(0.142) (1.830) (2.985) (21.073) (505.647)

N 1003 75 75 75 75
χ2 52.66
Robust standard errors in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 7: Regression Analysis of Minor Incidents Including Wheat and All shipments

(1) (2) (3) (4) (5) (6)
Thousand crude cars 0.322*** 0.244* 0.244* 0.312*** 0.242* 0.242*

(0.082) (0.132) (0.132) (0.078) (0.124) (0.124)
Thousand wheat cars 0.020 -0.080 0.114 -0.001

(0.831) (0.843) (0.818) (0.834)
Thousand all cars 0.087 0.088 0.078 0.078

(0.113) (0.112) (0.105) (0.106)
Dm1 -0.062 -0.058 -0.058

(0.458) (0.459) (0.459)
Dm2 0.031 0.053 0.053

(0.453) (0.452) (0.452)
Dm3 0.363 0.356 0.355

(0.404) (0.404) (0.404)
Dm4 0.489 0.477 0.479

(0.391) (0.392) (0.392)
Dm5 0.533 0.507 0.510

(0.391) (0.393) (0.394)
Dm6 -0.045 -0.058 -0.058

(0.424) (0.425) (0.425)
Dm7 -0.041 -0.055 -0.055

(0.418) (0.419) (0.419)
Dm8 0.225 0.211 0.210

(0.397) (0.398) (0.398)
Dm9 0.156 0.146 0.147

(0.408) (0.408) (0.408)
Dm10 0.446 0.458 0.457

(0.387) (0.386) (0.386)
Dm11 -0.002 -0.000 -0.002

(0.414) (0.414) (0.414)
Winter dummy -0.275 -0.262 -0.262

(0.186) (0.187) (0.187)
constant -0.756* -0.853** -0.850** -0.535* -0.626** -0.626**

(0.417) (0.424) (0.425) (0.293) (0.307) (0.309)
χ2 22.976 23.649 23.671 18.985 19.668 19.668
All regressions include fixed effects for origination-destination state pairs
Robust standard errors in parentheses
913 observations
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 8: Regression Analysis of Minor Incidents Related to Miles (1, 2, 3) and Weight (4, 5, 6)

(1) (2) (3) (4) (5) (6)
Million Miles, Crude Shipments 9.842** 10.004** 11.559**

(4.563) (4.427) (4.857)
Million Miles, All Shipments 12.380** 11.510** 10.566*

(5.743) (5.594) (5.617)
Million Tons, Crude Shipments 0.119* 0.124* 0.117*

(0.070) (0.068) (0.071)
Million Tons, All Shipments 0.031 0.024 0.028

(0.053) (0.051) (0.054)
Winter dummy -0.223 -0.269

(0.186) (0.186)
Dm1 -0.068 -0.052

(0.455) (0.461)
Dm2 0.105 0.034

(0.447) (0.453)
Dm3 0.325 0.375

(0.405) (0.404)
Dm4 0.436 0.476

(0.393) (0.392)
Dm5 0.453 0.529

(0.392) (0.391)
Dm6 -0.061 -0.068

(0.424) (0.425)
Dm7 -0.126 0.022

(0.426) (0.420)
Dm8 0.158 0.194

(0.399) (0.398)
Dm9 0.135 0.133

(0.405) (0.409)
Dm10 0.447 0.453

(0.383) (0.387)
Dm11 -0.023 0.014

(0.415) (0.414)
constant -1.060*** -0.965*** -1.137** -0.587* -0.489 -0.705*

(0.327) (0.334) (0.442) (0.303) (0.310) (0.429)
χ2 27.041 29.243 33.659 8.959 11.104 16.233
All regressions include fixed effects for origination-destination state pairs
Robust standard errors in parentheses
913 observations
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 9: Logit Analysis of Serious Incidents, 2

(1) (2) (3) (4) (5)

Millon Crude CarMiles 0.359* 0.359* 0.848** 0.851** 0.168
(0.195) (0.195) (0.408) (0.410) (0.197)

Millon All CarMiles -0.039 -0.039 0.181 0.182 -0.023
(0.177) (0.177) (0.206) (0.206) (0.180)

Millon Crude CarMiles, L1 -0.484 -0.483
(0.608) (0.608)

Millon Crude CarMiles, L2 0.091 0.088
(0.323) (0.325)

Millon Crude CarMiles, L3 -0.702 -0.705
(0.525) (0.527)

Millon All CarMiles, L1 0.109 0.110
(0.168) (0.169)

Millon All CarMiles, L2 0.101 0.102
(0.171) (0.171)

Millon All CarMiles, L3 0.103 0.103
(0.160) (0.160)

Count (Crude) 0.717**
(0.314)

Count (Crude), L1 -0.051
(0.426)

Count (Crude), L2 0.391
(0.288)

Count (Crude), L3 0.077
(0.349)

Count (All) -0.191
(0.216)

Count (All), L1 0.033
(0.189)

Count (All), L2 0.170
(0.183)

Count (All), L3 0.093
(0.180)

Winter dummy 0.013 -0.033 0.058
(0.271) (0.282) (0.288)

N 2558 2558 2454 2454 2454
χ2 5.357 5.360 15.214 15.227 15.805
All regressions include fixed effects for origination-destination state pairs
Robust standard errors in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 10: Logit Analysis of Serious Incidents, 3

(1) (2) (3) (4) (5)

Count (All) 0.175 -0.190 0.029 -0.174
(0.135) (0.216) (0.180) (0.221)

Count (All), L1 0.060 0.027 0.152 0.031
(0.140) (0.189) (0.169) (0.192)

Count (All), L2 0.288** 0.175 0.323** 0.180
(0.121) (0.183) (0.157) (0.188)

Count (All), L3 0.195 0.095 0.189 0.127
(0.127) (0.180) (0.161) (0.187)

Count (Crude) 0.775** 0.938**
(0.311) (0.431)

Count (Crude), L1 -0.078 0.251
(0.440) (0.464)

Count (Crude), L2 0.450 0.773**
(0.290) (0.380)

Count (Crude), L3 0.077 0.086
(0.355) (0.473)

Thousand Cars, Crude Shipments 2.008** 2.011** 1.696
(0.973) (0.957) (1.091)

Million Miles, Crude Shipments -0.992 -1.098 -2.489
(4.224) (4.669) (16.655)

Million Tons, Crude Shipments -1.043** -1.342** -1.339**
(0.521) (0.553) (0.605)

Thousand Cars, All Shipments 0.169 0.136 0.099
(0.123) (0.106) (0.092)

Million Miles, All Shipments 1.178 0.857 0.929
(1.125) (1.187) (1.186)

Million Tons, All Shipments -0.014 0.086 0.084
(0.113) (0.117) (0.115)

Winter dummy 0.013 0.046 0.073 0.110 0.084
(0.170) (0.288) (0.277) (0.293) (0.297)

N 7687 2247 2486 2178 2178
χ2 9.937 14.745 16.560 23.157 31.985
All regressions include fixed effects for origination-destination state pairs
Robust standard errors in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 11: Logit Analysis of Serious Incidents, 4

(1) (2) (3) (4)
Thousand Cars (Crude) 1.500** 1.414* 1.500** 1.414*

(0.755) (0.842) (0.755) (0.842)
Thousand cars (All) -0.419 -0.581 -0.419 -0.581

(0.536) (0.589) (0.536) (0.589)
Million Miles (Crude) -0.970 -1.089 -0.970 -1.089

(3.273) (3.654) (3.273) (3.654)
Million Miles (All) 3.536** 3.506* 3.536** 3.506*

(1.728) (1.848) (1.728) (1.848)
Count (Crude) 1.057** 1.166** 1.057** 1.166**

(0.440) (0.474) (0.440) (0.474)
Count (Crude) L1 0.554 0.554

(0.541) (0.541)
Count (Crude) L2 0.781 0.781

(0.513) (0.513)
Count (Crude) L3 -0.337 -0.337

(0.727) (0.727)
Count (All) -0.066 -0.033 -0.066 -0.033

(0.247) (0.245) (0.247) (0.245)
Count (All) L1 -0.038 -0.038

(0.244) (0.244)
Count (All) L2 0.197 0.197

(0.224) (0.224)
Count (All) L3 -0.056 -0.056

(0.264) (0.264)
Dtight x Weight 3.088 3.817 -0.130 -0.038

(4.291) (4.303) (0.308) (0.326)
Dtight TX x Weight 3.217 3.855

(4.292) (4.301)
N 2111 2025 2111 2025
χ2 49.938 57.548 49.938 57.548
All regressions include state-pair fixed effects and interactions between weight and state pairs
Robust standard errors in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01
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