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The Transition to Renewable Energy

1. Introduction

The tension between mounting pollution and the increasing need for energy that has occurred

over the past several decades raises important questions about the potential well-being of

future generations. These questions are squarely in line with the Malthusian tradition,

as they lead us to ask whether future societies are doomed to accept a lower standard of

living. One possible pathway out of this gloomy forecast is tied to the rise of renewable

energy. Might it be the case that transitioning from dirty, fossil-fuel based energy to clean,

renewable energy could allow continuing growth while avoiding the damages that have been

historically associated with energy use?

This question is directly linked to the concept of sustainability (Pezzey and Toman, 2002),

which economists have debated for many years. Much of this literature interprets sustain-

ability as non-decreasing well-being of a typical member of society (Solow, 1991). To oper-

ationalize this concept, the literature typically employs economic growth models. A general

finding is that for future generations to be at least as well off as current generations, society

must invest the rent from non-renewable resource use to increase the stock of physical capital

(Hartwick, 1977). Relatedly, when consumption of a non-renewable resource is associated

with pollution, as with fossil fuels, society is motivated to transition to an alternative, more

sustainable, resource.1

In general, economists have modeled this sort of transition by contrasting resource use

from a non-renewable source against the use of a “backstop” technology. The backstop is

usually assumed to be able to deliver any amount of energy at a constant marginal cost, which

implies the resource use can be expanded to the extent society desires without increasing its

marginal cost. Models with constant marginal cost of renewable energy commonly yields a

1 See, for example, Withagen (1994). There is a conceptual link between sustainability and the use of
a non-renewable resource whose usage generates pollution (Jevons, 1865; Hartwick, 1977; Forster, 1980;
Xepapadeas, 2005).
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result whereby society transitions between non-renewable and renewable resources when the

marginal cost of the former (including any scarcity rents or pollution charges) has risen to

equal equals the marginal cost of the latter (Hoel and Kverndokk, 1996). This switch typi-

cally occurs in a once-and-fo-all fashion, which is plainly at odds with reality. Furthermore,

for many renewable resources, the associated marginal cost of production is zero (or close to

it); in addition, most of the costs associated with renewable energies are sunk: it is expen-

sive to build the capacity to generate energy from renewable resources (Energy Information

Administration, n.d.).2 This generating capacity then constrains the amount of renewable

energy that is available; to increase renewable resource use, capacity must be expanded –

which, as figure 1 illustrates, has happened over the past several years.

In addition, a common feature of the backstop resource model – and indeed many resource

extraction models – is that society fully depletes the stock of the nonrenewable resource,

before switching to renewable resource use.3 As such, there is no potential for simultaneous

use. But many contemporary economies simultaneously utilize both non-renewable and

renewable energy.

In this paper, we address these empirical inconsistencies by presenting a model that

more satisfactorily characterizes the role of renewable energy. We adapt a neo-classical

growth model by incorporating an energy input into the aggregate production function;

the energy input can be associated with a (dirty) non-renewable resource, such as coal or

oil, or a (clean) renewable resource, such as wind or solar.4 Our innovation is to impose

a constraint on the rate of usage of the renewable energy input, which we interpret as the

2 The US Energy Information Administration (Energy Information Administration, n.d.) lists the levelized
cost of electricity (LCOE) for new energy sources to come online in 2020. The LCOE breaks down into
capital costs, fixed and variable operations and maintenance (O&M) costs and transmission costs. For wind
and solar energies, variable O&M costs are zero while for hydroelectricity, they only account for 8.4% of the
total LCOE. When sunk initial capital costs and fixed O&M costs are combined, they represent from 89%
to 98% of the LCOE for renewables (wind, solar and hydro electricity). This compares to less than 35% for
the multiple technologies of gas-fired plants, and up to about 74% for newest coal-fired plants.
3 Switching too early would imply forgoing low-cost energy, which helps boost the economy and increases
consumption.
4 In this regard, our paper is directly related to the literature on green growth. For a discussion of the
green growth literature see Smulders et al. (2015).
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renewable capacity. Similar to man-made capital, this capacity can only be increased through

investment (National Renewable Energy Laboratory, 2004; Knapp and Jester, 2001). We

allow the efficacy of this investment to depend on the stock level, reflecting learning-by-doing.

Working against any increases in capacity is wear and tear from the use of the renewable

energy, which is tied to the rate of usage of renewable energy (Staffel and Green, 2014;

Jordan and Kurtz, 2013). In this way, our model provides a more realistic description of

the role played by renewable energy in the time path of society’s well-being – and hence the

implications for sustainability – than can be found in the extant literature. Naturally, the

presence of capacity constraints implies the need to introduce a state variable that measures

capacity; this feature is absent from all the papers discussed above. A key feature of our

paper is the incorporation of this form of capital.

When the generation of energy from renewable sources is constrained by the installed

capacity at any given time, it is entirely possible that there will be a period when both

types of resource are used simultaneously. Expanding the renewable capacity would ease

this constraint, leading to a period in which the share of renewable resource use rises over

time, as society transitions away from the non-renewable resource base. Such a pattern

is fully in line with reality: for example, for nearly 15 years the role of coal in producing

electricity in the United States has been steadily shrinking, while the share attributable to

wind and solar energy has been rising.

Others have addressed the issue of simultaneous use. When pollution is linked to the

non-renewable energy use, the associated social costs are accounted for; this can lead to a

phase where both types of energy resource are used simultaneously, even if non-renewable

energy and the renewable alternative are perfectly substitutable (Tahvonen, 1997; Jouvet

and Schumacher, 2012). This approach implicitly assumes that society assesses some form

of charge against the production of dirty energy; while one can find isolated examples of such

charges, a number of important economies do not penalize dirty energy use. Simultaneous use

can also occur when the marginal cost of the renewable backstop is increasing. When both
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the energy demand and the cost of renewable energies are low, society may use renewables

only first, then switch to simultaneous resource use before switching again to renewables in

either finite or infinite time. Some non-renewable energy stock may be left in the ground,

implying a phase in which the economy only uses renewable energies (Tahvonen and Salo,

2001). But as noted above, the marginal cost of renewables are commonly small – and

non-increasing – over wide ranges of output levels.

van der Ploeg and Withagen (2014) link the initial levels of capital, pollution and non-

renewable resource stock to the type of energy used and the order in which they are used.

They find that simultaneous energy usage always follows a phase where only the non-

renewable resource is used; this only happens after man-made capital is above its carbon-free

steady-state level. The non-renewable resource is never phased out and man-made capital

has to be reduced to reach its long-run level – in this sense the economy “overshoots.” Ac-

cording to this view, simultaneous use occurs as the man-made capital stock is drawn down.

This feature of their model is arguably at odds with the current empirical reality, as society is

currently using both renewable and non-renewable energy at the same time that man-made

capital seems to be expanding.

Picking up on observations of simultaneous energy use, Gronwald et al. (2017) study en-

ergy production when the renewable backstop to dirty energies is constrained. Similar to

our model, they assume that society cannot completely switch to renewable energy as it is

constrained by capacity. In their model, however, renewable capacity is very hard to adjust;

when they do consider an expansion in capacity it is treated as an exogenous one-time shift.

That aspect of their model is inconsistent with the empirical evidence in figure 1, which re-

veals a gradual (and presumably endogenous) expansion of renewable capacity. By contrast,

our model does allow for such an endogenous expansion in renewable capacity. In line with

the economists criticisms of Malthus’ gloomy predictions, van der Meijden and Smulders

(2018) study technological progress and R&D in the transition to renewable energies. They

find that subsidies on green technologies work better than a carbon tax to expedite the
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transition to renewable energies. The desire for a smooth transition yields a simultaneous

use of both energy resources. In our model, this is not so much a desire, but a necessity.

Without prior investment in renewable energy capacity, society cannot ensure a ’sustainable’

transition.

While not incorporated in our analysis, an important issue with renewable energy is that

it is intermittent, which impacts its ability to act as perfect substitute to non-renewable

energy. If storage is possible, renewable production during off-peak times can cover peak

daytime demand (Pommeret and Schubert, 2018). This would allow for a smooth phase-out

of non-renewable energies, with solar and wind energies stored for off-peak consumption.

With high intermittency issues, complete transition to renewables while both non-renewable

and renewable energies act as a buffer energy source (Sinn, 2017).

The paper is organized as follows. We start in section 2 by discussing the main features

of our model. In section 3, we characterize the optimal paths of consumption and renewable

capital in the basic model. We discuss a numerical simulation of the model in section 5. A

discussion of the decentralized problem is presented in section 6. We discuss an extension of

the model to include multiple capital stocks in section 4. Section 8 offers some concluding

thoughts.

2. Modeling Preliminaries

Our model is built up from a conventional neo-classical growth model, but with some ad-

ditional features. Societal well-being is based on aggregate consumption, C. To facilitate

consumption, society must first generate an amount of aggregate production, Y . We investi-

gate two variants of the problem. In the first, production is determined by an energy input

E, with Y = F (E). The energy input is comprised of the rate of non-renewable energy use

q, which one can think of as oil, and renewable energy use h, which one can think of as solar:

E = q + h.
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In the second, production is linked to two types of inputs: physical capital K and energy,

and so Y = F (K,E). Energy can be produced using renewable and non-renewable resources.

We denote the rate of use of non-renewable energy input as q, and the rate of use of renewable

energy input as h. For expositional clarity, we will often refer to the non-renewable energy

input as “oil” and the renewable energy input as “solar” or “wind.”

The rate of renewable energy use is based on the stock of renewable capital, X, which

we interpret as generating capacity. The key wrinkle is that renewable energy is capacity-

constrained: h ≤ X.5 Renewable energy has very low variable costs, which we set equal to

0. The use of non-renewable energy entails costs, which we model as flow fixed costs.

The problem we are addressing is potentially quite complex, and so to facilitate a deeper

investigation we impose a number of assumptions on functional forms. None of these are

controversial, but using them greatly simplifies that analytics.

First, to focus the discussion on the role of renewable energy we specify the production

function as a power function. In the first variant, the production function is

A1 F (E) = αEβ.

In the second variant, we take the production function to be Cobb-Douglas:

A1′ F (E,K) = αEβK(1−β).

Second, we assume that utility U satisfies standard neo-classical assumptions; again, to

focus our attention we specify utility as iso-elastic:

A2 U(C) = C(1−θ)

1−θ
.

5 One might also imagine that renewable energy can only come on line after the capacity has reached some
threshold level, for example because of network effects. To the extent this aspect applies, it would likely
induce a “pre period,” during which only dirty energy was used – and where investment into the renewable
capacity was required to build up the stock. As we observe significant levels of renewable energy being used
currently, we focus our analysis on the period after that threshold stock has been reached. One way to
envision invoking this implicit assumption is by requiring that the initial level of the renewable stock, X(0),
is large enough so as to surpass the threshold level articulated above.
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Third, we assume that the rate of change in renewable capital depends on both investment

R and the standing stock X. This latter feature could reflect learning-by-doing in the evo-

lution and cost of technologies. Working in the opposite direction, there could be Ricardian

effects at play if the ability of renewable capital to generate energy depends on the suitability

of the land used for the capital installation.6 We capture the role of X via a function G(X),

which we interpret as reflecting the effect of one dollar of investment, i.e., G(X) describes

the efficacy of investing in renewable capital. This function plays an important role in our

inquiry. We assume G is the function

G(X) = Xae−bX , with a > 0, b > 0; (1)

so that gross additions to renewable capital are RG(X). This functional form allows for

learning by doing effects for low stock of capacity, while other industry-wide constraints

tend to lower the marginal impact of investment in capacity for higher stock levels (Mundlak,

1964). Lastly, we assume the stock depreciates at a a constant rate δ0.
7 Altogether, then,

the rate of change in renewable generating capacity is given by:

A3 Ẋ = RG(X) − δ0X = RXae−bX − δ0X. In the pursuant discussion we occasionally

refer to the elasticity of G with respect to X:

ϵG =
XG ′(X)

G(X)
= a− bX.

6 Gerlagh (2010) assumes decreasing returns to scale in the provision of the backstop, on the grounds that
the best placement sites are depleted – although he models this effect via increasing marginal cost of the
clean backstop. Chakravorty et al. (2012) allow for learning-by-doing, which they capture by assuming that
the unit cost of renewables decreases with accumulated backstop use.
7 This depreciation can be substantial. For example, Staffel and Green (2014) find that for wind farms
in the United Kingdom, load factors – the percentage of electricity actually produced, compared to the
theoretical maximum – falls by roughly 1.5% per year. While less dramatic, depreciation rates for solar
photovoltaics are on the order of 0.5% per year (Jordan and Kurtz, 2013).
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Fourth, we assume the pollution stock induces “damages” D(P ), with positive marginal

damages.8 We assume these damages are quadratic in the pollution stock:

D(P ) =
d

2
P 2. (2)

For analytic expediency, we follow van der Ploeg and Withagen (2014) by assuming there

is no depreciation in P . Accordingly, since cumulative extraction at any point in time t is

S0 − S(t), the pollution stock at any point in time can be written as

P (t) = P0 + κ
(
S0 − S(t)

)
.

Pollution damages are then

A4 D(P ) = dκ2

2
(P0

κ
+ S0 − S)2.

Fifth, we assume the stock of remaining non-renewable resource at time t, S(t), is depleted

with the rate of usage of non-renewable energy; so that we might measure the stock in terms

of natural units for damages (e.g., volume of CO2) while measuring the flow in terms of

energy (e.g., gigajoiules), we allow for a constant that captures the conversion between units

of measurement:

Ṡ = −q. (3)

We assume oil extraction entails a constant cost (i.e., a flow fixed cost) f as well as a constant

marginal cost γ, so that extraction costs are

c(q) =


f + γq if oil is used (q > 0)

0 if oil is not used (q = 0).

We envision a central decision-maker, or “social planner,” who is charged with promoting

the aggregate well-being of society for all time – the present discounted flow of aggregate

8 A natural interpretation here would be the contribution to atmospheric carbon stocks associated with
burning fossil fuels. As a second example, oil sands extraction in Alberta, Canada leaves significant tailings,
in particular containment ponds retaining water with fine or toxic residues (Heyes et al., 2018).
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utility, less any costs from extracting oil, less any damages from the pollution stock. The

discount rate is ρ.9

3. Problem where oil production is proportional to stock

We start our discussion with an analysis of a simple version of the problem, where oil

production is proportional to the remaining stock of oil. In this discussion we summarize

the key elements of the solution, and relegate most of the analytic details to Section A.1 of

the Appendix. One can think of this formulation of production as a variation on the notion

of a “decline curve.”10 With this assumption, the evolution of the stock of remaining oil is

Ṡ = −q = −λS.

where we denote derivatives with respect to time by a dot over the associated variable. Note

that the solution to this differential equation is

S(t) = S0e
−λt, (4)

which then implies oil production is

q(t) = λS(t) = λS0e
−λt. (5)

Then, since the oil stock decreases exponentially in this version of the problem during phase

1, we can write damages as

D(P (t)) =
d
(
P0 + κS0(1− λe−λt)

)2
2

. (6)

9 This discount rate was the source of considerable controversy in the context of climate policy. For
example, Stern (2007) proposes a very low discount rate, barely positive, while Nordhaus (2007) suggests a
rate closer to 3%. The ultimate choice of discount rate implies an ethical judgment, which is beyond the
scope of our paper and discussion. We merely point out the nature of the dynamic optimization scheme our
mythical social planner must decide upon, and relate it to a notion of sustainability.
10 Anderson et al. (2018) and Mason and Roberts (2018) provide empirical evidence supporting this as-
sumption. We discuss the extension to this basic model wherein q is endogenously selected in the next
section.
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The planner’s problem in this context is to select time paths of consumption level, renew-

able energy use and investment in renewable capital so as to maximize the discounted flow

of net benefits over an infinite horizon. The decision problem is constrained by the evolution

of the renewable capital stock and the capacity constraint on renewable usage. The problem

is also influenced by the accounting identity governing output. Output can be invested in

renewable energy or consumed:

F (E) = C +R, (7)

which allows us to write the equation of motion for X as

Ẋ = G(X)
(
F (E)− C

)
− δ0X.

In the pursuant discussion we will refer to the phase where oil is used as “phase 1” and the

phase where oil is not used as “phase 2.”

As we discuss below, the capacity constraint on renewables binds on the optimal path, so

that E(t) = X(t) + λS0e
−λt (resp., X) in phase 1 (resp., 2). Then from A1, we have:

F (E(t)) =


α
(
X(t) + λS0e

−λt
)β

in phase 1

αX(t)β in phase 2.

(8)

Extraction costs during phase 1 in this version of the problem are

c(q(t)) = f + γλS0e
−λt, (9)

The planner’s objective is to maximize the discounted flow of utility, less the discounted

flow of extraction costs and pollution damages:∫ ∞

0

[
U(C)− c(q)− d

(
P0 + S0 − S(t)

)]
e−ρtdt

by choice of the time paths of consumption and investment in renewable capacity, along with

the time of transition from phase 1 to phase 2 transition. Letting T̂ denote the transition
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time, the planner’s objective can then be written as:11

max
C,h,T̂

{∫ ∞

0

U(C)e−ρtdt−
∫ T̂

0

D
(
P (t)

)
e−ρtdt−∆1(T̂ )−∆2(T̂ )

}
, (10)

subject to assumptions A2, A3 and A4, the exogenously determined time paths of q, S

and pollution damages D, and the constraints 0 ≤ h ≤ X and 0 ≤ C ≤ F (E).12 The terms

∆1 and ∆2 represent, respectively, the discounted flow of extraction costs during phase 1

and the discounted flow of pollution damages during phase 2, each of which is exogenously

determined (aside from the chosen transition time T̂ ) in the context of this variant of our

model.

The optimal rate of consumption is characterized by

U ′(C) = ϕXG(X), (11)

where ϕX is the shadow value of the renewable resource capacity. Eq. (11) states that optimal

consumption equalizes the marginal utility from consumption to its current marginal cost is

common.13 The optimal rate of renewable energy use is dictated by complementary-slackness

conditions; we show in Appendix A that these conditions imply the capacity constraint will

bind.

The solution to this dynamic optimization problem also includes an equation of motion

governing the shadow value ϕX , which is:

ϕ̇X =
(
ρ+ δ0 + CG ′(X)−

[
G ′(X)F (E) +G(X)F ′(E)

])
ϕX . (12)

11 Note that the accounting identity, (7), implies that the choice of R follows immediately from the choice
of C and the value of X that is thereby induced.
12 Because the opportunity cost of using any installed renewable capacity is zero, and hence less than the
marginal cost of oil, it can never be optimal to set h = 0; likewise, as marginal utility increases without
bound as C approaches zero, the lower bound constraint n C can never bind. There is also an upper bound
on C; in the analysis that follows, this constraint also does not bind. We therefore omit consideration of
these three constraints from the pursuant discussion.
13 The marginal cost of current consumption is the shadow value of renewable capital multiplied by the
marginal effect of investment on capital accumulation, G(X).

12



This equation of motion applies in both phases.

Finally, the solution includes a characterization of the optimal switching time, T̂ . As the

stock of renewable capacity is free at this time it must be the case that the shadow value

immediately before and after the switch are equal (i.e., ϕX is continuous at T̂ ). But then

eq. (11) implies that C is also continuous at T̂ . In addition, the marginal effect of T̂ upon

the value functional must equal zero, which boils down to requiring

ϕX(T̂ )G(X̂)
[
F
(
X̂ + λŜ

)
− F (X̂)

]
− f − γλŜ =

λŜD′(Ŝ)

ρ
, (13)

where X̂ = X(T̂ ) and Ŝ = S(T̂ ) = S0e
−λT̂ . The left side of eq. (13) is the difference between

the marginal gain from slightly extending phase 1 and the extra cost that will be incurred

by extracting oil for a slightly longer amount of time, while the right side is the welfare cost

from slightly increasing the flow of pollution damages after the switch (by virtue of a slight

increase in the pollution stock). The condition says that the net gain from slightly delaying

the end of oil use just equals the marginal increase in the future discounted flow of pollution

damages.

While we have simultaneous use of oil and solar during phase 1, only solar is used in phase

2. Accordingly, there are only two control variables: the rate of consumption and the rate

of investment in renewable capacity. As such, this phase of the problem is analogous to a

traditional neoclassical growth model.14 We show in the appendix that the path of optimal

consumption during phase 2 can be described by the equation of motion: consumption –

and hence utility – will be non-decreasing if

ϵG
Ẋ

X
+

ϕ̇X

ϕX

≤ 0. (14)

For a range of initial conditions, the trajectories of consumption, renewable capacity and

the shadow value of renewable capacity converge to a steady state. The steady state values

14 During phase 2 one can abstract from pollution without loss of generality. While it is true that society
also bears disutility from damages associated with the pollution stock, these are independent of the controls
deployed in this phase.
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of consumption and renewable capacity are15

G(X∗)F ′(X∗) = ρ− δ0(ϵG − 1),

C∗ = F (X∗)− δ0X
∗

G(X∗)
.

Figure 2 provides phase diagram governing the dynamics in phase 2. We note two features

of the oil-free phase. First, some minimum level of renewable capacity must be reached before

society can move to the oil-free phase. This minimum level of solar capacity is a key difference

with a neoclassical growth model: while oil comes at the expense of extraction and pollution

costs, it helps build up the solar capacity necessary to move away from oil in the future. With

insufficient oil stock, a society can be trapped in phase 1, unable to build up sufficient solar

capacity. This implies declining energy use and consumption over time, down to subsistence

levels as oil gets scarcer. Second, the combination of renewable capacity and consumption

must be such that society enters phase 2 on a stable arm leading to the steady-state; the

dynamic system therefore displays conditional stability.

4. Problem with endogenous oil production

We next consider a version of the model where oil production is chosen endogenously. As

in the preceding section, herein we summarize the key elements of the solution, and relegate

most of the analytic details to Section A.2 of the Appendix.

The planner’s problem is to select time paths of consumption level, energy use and in-

vestment in renewable capital so as to maximize the discounted flow of net benefits over

an infinite horizon. Because the energy input is the sum of non-renewable and renewable

energy sources, the problem has four choice variables (C, q, h and R). Using the accounting

identity on production allows us to substitute for R, leaving us with three choice variables.

The decision problem is constrained by the evolution of the renewable capital stock and the

15 The steady state rate of investment in renewable capacity may be calculated as R∗ = δ0X
∗/G(X∗).

14



capacity constraint on renewable usage. The problem is also influenced by the accounting

identity governing output. As in section 3, output can be consumed or invested in renewable

energy; in addition, the capacity constraint on renewables binds on the optimal path¿. Thus,

E = X+q (resp., X) in phase 1 (resp., 2). Then combining with A3, we obtain the equation

of motion

Ẋ =


G(X)

(
α(X + q)β − C

)
− δ0X in phase 1

G(X)
(
αXβ − C

)
− δ0X in phase 2.

(15)

The planner’s objective can be stated as:

max
C,h,q,T̂

{∫ T̂

0

[
U(C)− c(q)−D(P )

]
e−ρtdt+

∫ ∞

T̂

[
U(C)−D(P̂ )

]
e−ρtdt

}
(16)

subject to A3, the constraints 0 ≤ h ≤ X and 0 ≤ C ≤ F (E), and where P (t) = P0 + S0 −

S(t) and P̂ = P (T̂ ).

As in section 3, the optimal rate of consumption sets the marginal utility from consump-

tion equal to marginal cost of current consumption (the shadow value of renewable capital

multiplied by the marginal effect of investment on capital accumulation):

U ′(C) = ϕXG(X). (17)

Also as before, the capacity constraint will bind, and ν = ϕXGF ′. Finally, the optimal rate

of oil extraction balances the marginal benefit from increased oil use against the extra cost:16

ϕXG(X)βα(X + q)β−1 = γ + ϕS. (18)

16 The increased oil usage raises output, which can either be consumed – generating an increase in utility
– or invested – generating an increase in future value via the expansion of the renewable capacity. The
additional cost is the sum of marginal extraction cost, γ, and the shadow cost associated with a reduction
in the remaining stock of oil, ϕS .

15



The solution also includes equations of motion governing the two shadow values. The

equation of motion for the stock of remaining oil is

ϕ̇S = ρϕS −D ′(P ).

This equation adapts a traditional Hotelling-style characterization, in which the shadow

value of a non-renewable resource such as oil would appreciate at the rate of interest, by

taking induced (marginal) pollution damages into account. As the capacity constraint on

renewables binds, the equation of motion for the shadow value of renewable capacity is:

ϕ̇X =
(
ρ+ δ0(1− ϵG)− ϵg

Ẋ

X
−G(X)F ′(E)

)
ϕX . (19)

Finally, the solution includes a characterization of the optimal switching time, T̂ . We note

first that the shadow value of remaining oil at the end of phase 1 must equal the marginal

effect of the remaining oil stock upon the present discounted value of phase 2. Because the

remaining oil stock decreases the pollution stock one-for-one, and it never depreciates, the

marginal continuation value is

ϕS(T̂ ) = D ′(P (T̂ )
)
/ρ. (20)

Because the stock of renewable capacity is free at T̂ , the current shadow value of renewable

capacity immediately before and after the switch must be equal – i.e., ϕX is continuous at

T̂ . But then eq. (17) implies that C is also continuous at T̂ ; moreover, ϕX(T̂ ) must equal

the marginal impact of X upon the present discounted continuation value, when evaluated

at T̂ . Writing q(T̂ ) = q̂ and employing eq. (18), this latter condition can be written as

ρ
(f + γq̂

q̂

)
+D ′(P ) = α

(
ργ +D ′(P )

)(F (X̂ + q̂)− F (X̂)

q̂F ′(X̂ + q̂)

)
. (21)

The term on the left side of eq. (21) is the difference between the marginal gain from slightly

extending phase 1 (a gain) and the marginal loss from slightly delaying the start of phase 2,

while the right side is the welfare cost from slightly increasing the flow of pollution damages
16



after the switch (by virtue of a slight increase in the pollution stock). The condition says

that the net gain from slightly delaying the end of oil use just equals the marginal increase in

the future discounted flow of pollution damages. The implication is that society transitions

– in finite time – into a phase where only renewable energy is used.17

The path of optimal consumption is described by the equation of motion:

Ċ

C
= −1

θ

{
ϵG

Ẋ

X
+

ϕ̇X

ϕX

}
. (22)

so that consumption (and utility) will be non-decreasing if

ϵG
Ẋ

X
+

ϕ̇X

ϕX

≤ 0.

During phase 1 we have simultaneous use of oil and solar, while only solar is used in phase

2. In phase 2 the problem consists of two control variables: the rate of consumption and the

rate of investment in renewable capacity. As such, phase 2 of this problem is analogous to

phase 2 of the problem considered in section 3. In particular, for a range of initial conditions,

the trajectories of consumption, renewable capacity and the shadow value of renewable

capacity converge to a steady state. Figure 3 depicts the time paths of renewable capacity

and consumption during both phases; in this diagram both variables increase throughout

time, and converge to a steady state. The steady state values of consumption, investment

and renewable capacity are the same as in section2:

G(X∗)F ′(X∗) = ρ− δ0(ϵG − 1), (23)

R∗ = δ0X
∗/G(X∗), (24)

C∗ = F (X∗)− δ0R
∗. (25)

17 In this way, there is a duality between choosing the cutoff pollution stock and choosing the time of
transition. The idea that there might be a cutoff level of the pollution stock is consistent with discussions
at many of the annual United Nations Climate Change Conferences; it is of central importance in the Paris
agreement that was negotiated in 2015. The idea has also appeared in the scientific literature, for example
Allen et al. (2009). We suppose that oil is a sufficiently valuable resource that F (λS0) > γ, i.e., in a scenario
where only oil is used the value of output exceeds the cost of production at least for a period of time.
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We note two features of phase 2. First, some minimum level of renewable capacity must be

reached before society can move to the oil-free phase. This minimum level of solar capacity

is a key difference with a neoclassical growth model: while oil comes at the expense of

extraction and pollution costs, it helps build up the solar capacity necessary to move away

from oil in the future. With insufficient oil stock, a society can be trapped in phase 1, unable

to build up sufficient solar capacity. This implies declining energy use and consumption over

time, down to subsistence levels as oil gets scarcer. Second, the combination of renewable

capacity and consumption must be such that society enters phase 2 on a stable arm leading

to the steady-state; the dynamic system therefore displays conditional stability.

As we discuss in the next section, when the initial levels of renewable capacity and the

oil stock are both sufficiently small or sufficiently large, Malthusian effects – with declining

standards of living – are possible.

5. Numerical Illustration

To shed further light on the dynamics of our problem, and the implications for continual

growth in well-being, we produce some numerical simulation results. These simulations

were based on specific parameterizations, which we believe to be non-controversial. For

the production function we take α = 2, β = .9. For aggregate utility, we set θ = .5; with

this parameterization the inter-temporal elasticity of substitution is 2.18 We set marginal

damages from the pollution stock as d = 1, which can be interpreted as specifying damage

in terms of utils. The parameters characterizing the efficacy of investment R in renewable

energy capacity X are a = 3.5, b = a
e
.19 With this specification the maximum value of G,

which obtains at X = a/b, is equal to 1. As such, the interpretation is that efficacy is viewed

as a fraction of its maximal level. Depreciation of X is taken to be δ0 = 0.05, which is also

the decline rate in oil production λ. Finally, we set the rate of time preference as ρ = 0.02.

18 This choice is consistent with Tahvonen and Salo (2001), who require θ to be between zero and one. In
Hansen and Singleton (1982), θ ranges from 0.68 and 0.95, while van der Ploeg and Withagen (2014) assume
θ = 2. Setting θ < (>)1 implies an intertemporal substitution greater (less) than 1.
19 We also consider a version with a¡ 1, as discussed below.
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Using this parameterization, we numerically simulated the system of differential equations

during each phase.20 The procedure was to solve for the path during phase 1, including the

endogenously optimal switching time, and to then use the terminal values of X and C from

phase 1 as initial conditions in phase 2, constraining the phase 2 path to converge to the

steady state. Figure 3 illustrates the resultant time paths for X and C. Phase 1 levels of

renewable capacity are depicted by the line with triangles, while phase 1 consumption levels

are the simple line; phase 2 levels of renewable capacity are depicted by the dashed line

while phase 2 consumption levels are the line with diamonds. Both variables grow slowly at

the outset, reflecting the role played by the non-renewable resource early on in the program.

But as this resource stock declines, society quickly switches to renewables. Oil is abandoned

at time T̂ , after which consumption and renewable capacity both converge smoothly to their

steady state values.

The path illustrated here is based on a moderate initial stock of nonrenewable energy.

For larger initial levels, an intriguing phenomenon emerges: as in figure 3 society gradually

increases renewable capacity during phase 1. Now, however, the oil stock is large enough

that it takes considerably longer to reach the point in time where oil is abandoned. With

this longer timeline, together with the larger levels of output that are made possible by

the large initial oil stock, the renewable capital level at time T̂ exceeds the steady state

level. Accordingly, once phase 2 is entered renewable capacity and consumption both fall,

traversing along the stable branch above the steady state. Figure 4 illustrates this pattern

for the entire time horizon, while Figure 5 focuses on the range of time after society draws

near to the switching time.

Three points emerge from this particular example. First, the time paths in this example

exhibit a Malthusian effect: well-being rises for a time, but at the expense of later generations.

Second, while it is apparent that utility would need to fall at some point where the initial level

of renewable capacity to exceed the steady state level, this example shows non-monotonic

20 Using the ode45 module in MATLAB, as well as the Maple computer programs.
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utility can occur even if the initial level of X is not large. Third, the example reveals the

significance of large initial endowments of nonrenewable energy. This result echoes Gerlagh

(2010), who also finds that initial endowments of “too much oil” can ultimately be harmful.

Unlike Gerlagh, our result emerges not because of overly large pollution damages, but because

society is lured into excessive development of a key capital stock. This feature is reminiscent

of the overshooting effect found in van der Ploeg and Withagen (2014).21

It is also possible for Malthusian-like effects to arise when the initial stocks of oil and

renewable capacity are small. Figure 6 illustrates such an example. This example is built up

from a smaller value of a (= 0.75), along with a larger value of b (= 8.4075); we also change

α, now setting it equal to 1. All other parameters are as above. With this parameterization

there are two steady states. The one with larger consumption and larger renewable capacity

is saddlepoint stable, so there are paths converging to that steady state; figure 7 illustrates.

There, the initial stocks of oil and renewable capacity are sufficient to allow production levels

that support trajectories with ever-rising utility. By contrast, the steady state with smaller

consumption and smaller renewable capacity is unstable. With two steady states there are

combinations of initial stock levels that lie outside of (below) the basin of attraction for

the stable steady state. As such, these initial conditions can not support trajectories that

lead to the good steady state – instead, they converge asymptotically to the origin. The

interpretation here would be that of an impoverished economy, which is doomed to a deeply

pessimistic future. While the underlying reasons differ from Malthus’ original narrative, they

are spiritually similar.

6. Decentralized problem

In this section we sketch a decentralized model, and compare it the the (first best) solu-

tion to the social planner’s problem analyzed above. We adopt assumptions conventionally

21 van der Ploeg and Withagen (2012) are also skeptical of the “too much oil” story, but for a very different
reason: they argue that the important concern is that there is too much of a much dirtier resource (coal).
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employed in the literature.22 A representative consumer maximizes utility that is tied to a

consumption good C, via U(C). This good is supplied by a perfectly competitive industry.

The production of this good is based on energy, using the production function in A1. The

market price paid by consumers equals marginal utility U ′(C); this in turn equals marginal

cost, which is the ratio of the price of energy P to its marginal product F ′(E).

Energy is supplied by an industry with N firms, all of whom have access to both types of

energy resources (i.e., oil and solar). To streamline the presentation we retain the assumption

that oil production follows a decline curve, and assume that all firms have initial oil deposits

of size s0; thus, firm j supplies energy

ej = λs0 + hj,

where hj ≤ xj is j‘s supply of renewable energy, and xj is its renewable capacity. Extraction

of oil entails a flow fixed cost γ̃. The evolution of the firm’s renewable capacity is given by

ẋj = G(X)rj − δxj,

where rj is investment rate in renewable capacity undertaken by the firm. As in the planner’s

problem, the efficacy of this investment depends on a function G, which captures both

learning by doing and Ricardian effects; for comparability with the earlier discussion we

retain the specific form

G(X) = Xae−bX

given in eq. (1).

The relation between X and G deserves comment. The Ricardian effects we described

above would surely depend on industry development (and hence land acquisition), which

explains the presence of X in the exponential term. And while one might envision the

22 See, for example, van der Ploeg and Withagen (2012); André and Smulders (2014) and Golosov et al.
(2014). Tsur and Zemel (2011) also analyze a decentralized equilibrium, but do not account for the disutility
from pollution arising from extracting non-renewable resource, nor do they include learning-by-doing or
Ricardian effects in their model.
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learning-by-doing effects resulting the firm’s individual experience, we assume the dominant

effect arises from industry experience. For example, this seems to be the case with solar,

where installation costs of new capacity have fallen over time on the basis of experience

acquired by installers. Under this interpretation, the efficacy of investment monies depend

on the combined historical experience of all firms, which is summarized by total industry

capacity X; this explains the presence of X in the power function component of G.

The typical firm’s current-value Hamiltonian in phase 1 is

Hj = P
(
λs0 + hj

)
− γ̃ − rj + φ

(
G(X)rj − δ0xj

)
+ νj(xj − hj). (26)

This leads to the optimization rules:

∂Hj

∂hj

P − νj if hj > 0, (27)

∂Hj

∂rj
= −1 + φxjG(X), (28)

φ̇j = ρφ− ∂Hj

∂xj

= (ρ+ δ0 − rj
∂G

∂xj

)φ− νj, (29)

νj ≥ 0, xj ≥ hj, νj(xj − hj) = 0. (30)

As above, it is straightforward to show that combining the optimality condition on h with the

complementary slackness condition, eqs. (26) and (29), leads to the conclusion that hj = xj.

It then follows that

νj = P.

Finally, the firm ceases oil extraction at that moment T̃ when flow profits have fallen to zero,

or

Pλs0e
−λT̃ = γ̃.

With N identical firms, total (industry) extraction costs are Nγ̃, which corresponds to γ in

the planner’s problem; total initial reserves are S0 = Ns0. It follows that the switching time
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in the decentralized model can be expressed as

T̃ =
ln(Ps0/γ̃)

λ
,

which is unambiguously larger than T̂ in the planner’s problem. This difference comes down

to the fact that firms in the decentralized problem do not take into account the effects their

actions have on social damages, via the pollution stock – i.e., that their actions induce a

negative externality.

To further develop the discussion, we need to elaborate on the impact of a small change

in the firm’s capacity upon G. If one takes the view that the firm is atomistic, i.e., N is very

large, then presumably
∂G

∂xj

= 0. Alternatively, one might imagine the firm treats all other

firms’ capacity profiles as fixed, so that
∂G

∂xj

= G′. We take the latter approach below. With

this assumption, the equation of motion for the firm’s shadow price of renewable capacity

can be reduced to

φ̇j = (ρ+ δ0 − rj)φ− P

= (ρ+ δ0 −
R

N
G′)φ− U ′F ′ (31)

as there are N identical firms, and the competitive equilibrium in the consumption good

market ensures U ′ = p/F ′. By comparison, the equation of motion for the shadow value of

renewable capacity in the socially optimal program is, from eq. (12)

ϕ̇X = (ρ+ δ0)ϕ−
[
ϵG(

Ẋ

X
+ δ0)−GF ′]ϕX .

Using A3, eq. (17) and the definition of ϵG, this expression can be simplified to

ϕ̇X = (ρ+ δ0 −RG′)ϕX − U ′F ′. (32)

Comparing eqs. (30) and (31), we see the difference comes down to a comparison between

RG′ and R
N
G′. For N > 1 these can not be equal, which is intuitive: because learning
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exhibits spillover effects, there is a positive externality that is not captured in the private

equilibrium. As we noted above, there is also a difference between the decentralized and

socially optimal switching times, which reflects the negative externality firms’ oil use imposes

on society. To align the private and socially optimal equilibria then would require the use

of two instruments: a pollution tax (or cap on ultimate extraction), and a subsidy for

investment in renewable capacity.23

7. Problem with two inputs into production

We now turn to the problem when both man-made capital (K) and energy influence

aggregate production. As with the first variant, we give a brief discussion of the solution

here, and delegate most of the analytic details to Appendix B. In this variant of the problem,

there are two types of investment (I and R), as well as a new state variable. We set the

equation of motion for the stock of man-made capital as:

K̇ = I − δKK, (33)

i.e., capital increases with investments I and depreciates at rate δK . The accounting identity

governing consumption and investments becomes

F (E,K) = C + I +R + γ,

where the last term represents extraction costs (and hence only applies if extraction is pos-

itive). As in section 3 there is a constraint on pollution, which induces a cutoff level Ŝ on

the remaining stock of oil – so that there will be two phases, one where both types of energy

are used and one where only renewable energy is used.

23 Compare with Acemoglu et al. (2012), who also finds that these two policy tools are required to induce a
first-best outcome in a decentralized framework. Subsidizing clean energy and investing capacity expansion
lead to a weak Green Paradox (Sinn, 2008; van der Ploeg and Withagen, 2015). A strong Green Paradox is
found to occur when renewables capacity is subsidized, as it gives an incentives to pollute before a switch to
renewable energy occurs.
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This variant is a bit easier to work with when posed as a calculus of variations problem.

and so we adopt that approach. To that end, it is most convenient to rewrite the accounting

identity so as to isolate consumption:

C = F (E,K)− I −R, (34)

and write utility in terms of the right-hand side of eq. (33).

The solution to this variant of the problem is characterized by the Euler equations, of

which there are two; in this setting, it will be convenient to work with the ratio of the two

capital stocks:

χ =
X

K
.

Using this definition, the Euler equations can be written as

θ
Ċ

C
= α(1− β)χβ − (ρ+ δK); (35)

θ
Ċ

C
= αβχβ−1G(X) +

(
δ0ϵG − 1

)(Ẋ
X

+ 1
)
− ρ. (36)

These conditions can be combined to yield a first-order differential equation that governs

the solution:

αχβ−1
(
βG(X)− (1− β)χ

)
+
(
δ0ϵG − 1

)(Ẋ
X

+ 1
)
− δK = 0.

At the steady state for this system Ċ = Ẋ = 0; using eqs. (34)–(35) we have

(χ∗)β =
ρ+ δK
α(1− β)

, (37)

(χ∗)(β−1) =
ρ+ 1− δ0(a+ bX∗)

αβG(X∗)
. (38)

As in section 3, the optimal program can be split into two phases: both oil and solar

are used in phase 1, but only solar is used in phase 2. As above, the system may converge

to a steady state in phase 2; we illustrate some possible paths in figure 8. This diagram
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shows the stable trajectories for utility U , capital K and the renewable resource stock X for

five scenarios; the steady-state is represented as the black dot in the centre. The trajectory

identified by circles shows the case for which both X(0) and K(0) are each half their steady-

state value, which we refer to as “scenario (i)” in the discussion below. Figure 8 also includes

trajectories corresponding to the following scenarios: scenario (ii) sets K(0) = 0.5K∗ and

X(0) = 1.5 X∗; scenario (iii) sets K(0) = 1.5K∗ and X(0) = 0.5X∗; scenario (iv) sets

K(0) = 1.5K∗ and X(0) = 1.5X∗.

As the figure illustrates, any trajectory starting from initial values of X and K that are

larger than their steady-state value would imply that utility must decline at some point.

Thus, only scenario (i) is sustainable; the other scenarios in the Figure are not sustainable.

Thus, a necessary condition for sustainability is that the initial values of X andK are smaller

than the corresponding steady-states. But there are trajectories with a small initial value of

K that is not sustainable, so the condition is not sufficient.

The figure also illustrates a trajectory (v) that temporarily prevents investment in re-

newable capacity. This scenario can be interpreted as one in which society has placed a

moratorium on development of renewable energy, which could be thought of as a manifesta-

tion of the energy policies undertaken by the Trump administration in the US over the past

few years. We see that this policy delivers an unsustainable path, inasumch as it promotes

large consumption levels in the short run. Because the levels of X and K cannot be instan-

taneously adjusted, society has to immediately lower consumption, which causes a one-time

loss in utility – as represented by the arrow on the graph.

8. Concluding remarks

The existing economics literature on sustainability and energy use typically assumes that

energy from renewable natural capital can be bought at a fixed price, with no other con-

straint. This assumption is quite strong, particularly from the social planner’s standpoint,

as it ignores the dynamic aspects of renewable natural capital and its accumulation. It also
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commonly leads to an empirical prediction that is at odds with reality: that society will use

the non-renewable energy resource exclusively up to a certain time, at which point it will

switch to using renewable energy exclusively. In our view, the most natural way to extend

the analysis so as to circumvent this empirical inconsistency, is to impose limits on the mag-

nitude of renewable energy use in accordance with a capacity constraint. This constraint

arises from a capital stock that facilitates the exploitation of renewable energy. With this

interpretation, for society to reap the benefits from the renewable resource it has to con-

tinually invest: While delaying investment yields a short increase in welfare, this increase

dissipates quickly. In addition to producing a more empirically satisfactory explanation for

simultaneous use of non-renewable and renewable energy, we also find that it can be optimal

for society to cease use of non-renewable energy, switching to the exclusive use of renewable

energy, even though the non-renewable resource stock is not fully exhausted.24 Our paper

provides such an extension.

It is optimal to completely switch from non-renewable to renewable resources in energy

production, and in finite time. Interpreting sustainability as the restriction that utility never

decrease as time goes by, we find find paths that are sustainable. Sustainability can arise

when the initial levels of the relevant state variables are neither too large, nor too small.

Certainly they need to be smaller than their respective steady-state values. Any trajectory

that requires a reduction in one of the state variables is unsustainable, as is any scenario that

requires society accept a reduction in output, for example when a moratorium on additions

to renewable capacity is imposed. But Malthusian-like paths can also emerge when society

is endowed with a large initial stock of the non-renewable resource.

Important policy implications emerge from this framework. Although we did not discuss

the manner in which society determines the allocation of resource bases to energy production,

we can envision a number of approaches. Society could impose standards that require a

certain level of usage of renewables, as with Renewable Performance Standards – popular

24 This calls to mind the quote from Sheik Yamani, former oil minister for OPEC: ”[t]he stone age did not
end for lack of rocks, and the oil age will not end for lack of oil.”
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in some US states. Or society could adopt a tradable permit scheme for carbon emissions,

as with the EU’s emission trading system. A third option is to invoke a carbon tax – as in

the Canadian province of British Columbia – which raises the cost of (non-renewable) fossil

fuels. The presence of a capacity constraint on the use of renewables would suggest that none

of these policies can induce increased renewable production in the moment (as the capacity

constraint would preclude such expansion), though it seems likely to encourage increased

investment in renewable capacity – and perhaps research into new innovations (Acemoglu

et al., 2012). In this regard, the financial rewards associated with avoiding the the carbon

tax would seem pose an attractive incentive in a decentralized economy, such as that found

in most Western countries.

As with any model, we have imposed a structure that invites extension. For example, we

assumed perfect substitution between renewable and non-renewable resources in energy gen-

eration. In practice, renewable energies are subject to intermittency and storage constraints

which can inhibit substitution (Pommeret and Schubert, 2018). That said, one would expect

that it is possible to produce some energy even if q = 0. For it to be possible to generate

energy if society no longer relies on non-renewable resources, i.e., E(0, h) > 0, one of two

scenarios would obtain: Either non-renewable capital would be exhausted in finite time,

in which case society would reach a post non-renewable resource phase similar to the one

described above; or society would have to manage its use of both types of natural capital

so as to asymptotically converge to the post non-renewable resource steady-state. In the

second situation, non-renewable resources would be gradually phased out in favor of their

renewable alternative. Thus, the steady-state values of physical and renewable natural cap-

ital, consumption and energy shares correspond to post non-renewable regime we discussed

above, whether society switches to renewable energies in finite time or infinite time (Vardar,

2013). Given the dynamic nature of energy investments, any new policy aiming at promoting

renewable energies must carefully examine the possibility and cost associated ‘dirty’ assets

being stranded following policy implementation. Stranded assets can arise from inconsistent
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policy signals following political elections or from the possibility for some elected officials

to veto policies announced by other elected officials. Such time-inconsistencies are costly

when investments in dirty assets are irreversible; accounting for them changes investment

patterns (Kalkuhl et al., 2020). Indeed, some authors have suggested that we should switch

to investing solely in renewables so as to constrain the rise in temperature to 2°C (Baldwin

et al., 2020). Finally, we have abstracted from the use of abatement to reduce the pollution

stock. Such an extension would enhance the realism of the structure, but at the cost of

adding an additional control variable. While such an addition would refine the analysis, it

seems unlikely to change the spirit of the analysis, nor our central results.

Appendix A. Technical details of the planner’s problem, variant 1

In this Appendix, we provide the technical details for the models in section 3 and section 4.

A.1. Exogenous oil. The planner’s problem is to maximize the present discounted flow of

utility less pollution damages. Damages are

∆ =

∫ ∞

0

d

2
(P0 + κ(S0 − S(t)))2 e−ρtdt

=

∫ T̂

0

d

2
(P0 + κ(S0 − S(t)))2 e−ρtdt+

∫ ∞

T̂

d

2

(
P0 + κ(S0 − S(T̂ ))

)2
e−ρtdt

=

∫ T̂

0

d

2
(P0 + κ(S0 − S(t)))2 e−ρtdt+

d

2

(
P0 + κ(S0 − S(T̂ ))

)2 e−ρT̂

ρ
dt.

The present discounted value of the flow of utility can be expressed as I1 + I2, where

I1 =

∫ T̂

0

U(C)e−ρtdt

I2 =

∫ ∞

T̂

U(C)e−ρtdt.
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The value functional is then the present discounted value of the flow of utility, less the present

discounted value of extraction costs, less damages:

V = I1 + I2 −∆.

max
C,h,T̂

{∫ ∞

0

U(C)e−ρtdt−
∫ T̂

0

[
c
(
q(t)

)
+D

(
P (t)

)]
e−ρtdt−

∫ ∞

T̂

D
(
P (T̂ )

)
e−ρtdt

}
. (A.1)

which is eq. (10) in the main text. One can regard this dynamic optimization problem as a

conventional optimal growth model, augmented by a salvage value; in such an interpretation

the salvage value is

ω(T̂ ) = −
(∫ T̂

0

[
c
(
q(t)

)
+D

(
P (t)

)]
e−ρtdt+

∫ ∞

T̂

D
(
P (T̂ )

)
e−ρtdt

)
. (A.2)

To describe the solution to this problem, we first form Hi, the current-value Hamiltonian-

Lagrangean for phase i = 1, 2. To this end, we note first that because the opportunity cost

of using any installed renewable capacity is zero (and hence less than the marginal cost of

oil), it can never be optimal to set h = 0; likewise, as marginal utility increases without

bound as C approaches zero, the lower bound constraint on C can never bind. There is also

an upper bound on C; in the analysis that follows, this constraint also does not bind. We

therefore omit consideration of these three constraints from the pursuant discussion, and so:

H1 = U(C) + ϕX

[
G(X)

(
F (h+ S0e

−λt)− C
)
− δ0X

]
+ ν(X − h), (A.3)

H2 = U(C) + ϕX

[
G(X)

(
F (h)− C

)
− δ0X

]
+ ν(X − h). (A.4)

The solution to the optimization problem satisfies Pontryagin’s maximum principle:

0 =
∂H

∂C
⇐⇒ U ′(C) = ϕXG(X); (A.5)

ϕ̇X = ρϕX − ∂H

∂X
=
(
ρ+ δ0 + CG ′(X)−

[
G ′(X)F (E) +G(X)F ′(E)

])
ϕX ; (A.6)
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as well as the complementary-slackness conditions

∂H

∂h
= ϕXG(X)F ′(E)− ν ≤ 0, h ≥ 0, h(ϕXG(X)F ′(E)− ν) = 0, (A.7)

∂H

∂ν
= X − h ≥ 0, ν ≥ 0, ν(X − h) = 0. (A.8)

These conditions imply the capacity constraint must bind. Suppose to the contrary that

the constraint did not bind at some time, so h < X. Then the last part of (A.8) implies

ν = 0 at that moment. But ϕX , G and E ′ are all positive, in which case ν = 0 would

imply ϕXG(X)F ′(E)− ν > 0, in violation of the first part of the complementary slackness

condition (A.8). We conclude the original supposition was false, and conclude that the

capacity constraint binds at all times.25

Finally, the solution includes a characterization of the optimal switching time, T̂ . Viewing

this as a free end-time problem for phase 1, combined with a free start-time problem for phase

2, and applying the transversality conditions from Léonard and van Long (1992), we find

H1 − H2 + eρT̂ω ′(T̂ ) = 0.

From eq. (A.2) we have

ω ′(T̂ ) = −c
(
q(T̂ )

)
e−ρT̂ −D ′(P (T̂ )

)
P ′(T̂ )

∫ ∞

T̂

e−ρtdt

= −e−ρT̂
(
f + γλS(T̂ )) +D ′(P (T̂ )

)
P ′(T̂ )

)
(A.9)

Then combining eqs. (A.3), (A.4) and (A.9) and rearranging, we obtain

ϕX(T̂ )G(X̂)
[
F (X̂ + λS0e

−λT̂ )− F (X̂)
]
− f − γλS0e

−λT̂ =
dP (T̂ )κλS0e

−λT̂

ρ
. (A.10)

A.2. Endogenous oil. We now discuss the extension to the basic model, wherein oil use is

not constrained by decline curve effects. In this variant, the rate of oil use is an additional

choice variable, the remaining stock is an additional state variable, and there is an additional

25In addition, the first part of (A.8) yields ν = ϕXGF ′.
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co-state variable ϕS (the shadow value of remaining oil). The first thing to note is that

behavior in phase 2 is essentially unchanged by this extension – the steady state is as before,

and the path dynamics are still described by equations of motion for C and X. Behavior in

phase 1 is potentially changed, and so our discussion is focused there.

max
C,h,T̂

{∫ ∞

0

(
U(C)−D(P )− c(q)

)
e−ρtdt

}
(A.11)

H =U(C)−D(P0 + κ(S0 − S(t)))− c(q) + ϕX

[
G(X)

(
F (q)− C

)
− δ0X

]
(A.12)

+ ϕS(−q) + ν(X − h),

The solution to the optimization problem satisfies Pontryagin’s maximum principle:

0 =
∂H

∂C
⇐⇒ U ′(C) = ϕXG(X); (A.13)

ϕ̇X = ρϕX − ∂H

∂X
=
(
ρ+ δ0 + CG ′(X)−

[
G ′(X)F (E) +G(X)F ′(E)

])
ϕX ; (A.14)

ϕ̇S = ρϕS − ∂H

∂X
= ρϕS − κD′(P (t)); (A.15)

as well as the complementary-slackness conditions

∂H

∂h
= ϕXG(X)F ′(E)− ν ≤ 0, h ≥ 0, h(ϕXG(X)F ′(E)− ν) = 0, (A.16)

∂H

∂ν
= X − h ≥ 0, ν ≥ 0, ν(X − h) = 0, (A.17)

∂H

∂q
= ϕXG(X)F ′(E)− c′(q)− ϕS ≤ 0, q ≥ 0, q(ϕXG(X)F ′(E)− c′(q)− ϕS) = 0, (A.18)

(A.19)

The objective functional for phase 1 is now:∫ T̂

0

(
U(C) + dS

)
e−ρtdt,
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with associated current value Hamiltonian26

H1 = U(C)− dS + ϕX

[
G(X)

[
F (X + q)− C − γ

]
− δ0X

]
− (1 + µ)qϕS + ν(X − h).

The optimality conditions for C and ϕ̇X are as in section 3 above, but Pontryagin’s maximum

principle is now augmented by the inclusion of two new equations:

0 =
∂H1

∂q
= ϕXG(X)F ′(X + q)− (1 + µ)ϕS,

ϕ̇S = ρϕS − ∂H1

∂S
= ρϕS + d.

The solution to the equation of motion for ϕS is easily seen to be

ϕS = ϕ0
Se

ρt +
d

ρ
.

Making use of eq. (17), we rewrite the optimality condition for q as

U ′(C)F ′(X + q) = (1 + µ)ϕ0
Se

ρt +
d(1 + µ)

ρ
. (A.20)

The left-hand side of eq. (A.20) is the marginal value product of oil in utils, while the first

term on the right represents the resource-related opportunity cost of extraction; accordingly,

this equation can be interpreted as a modified Hotelling rule, where the modification arises

from the second term on the right-hand side. This second term is related to the social cost

of carbon.

The solution is completed by determining the optimal date to cease extraction of oil. But

this is dictated by the same rule as in the basic model, namely that the difference in the

Hamiltonian just before and just after T̂ equals the marginal impact of a slight delay in

switching upon the future present discounted flow of damages implied by a slight increase in

the pollution stock.

26 There is also a non-negativity constraint on q, but that is moot since by definition q > 0 in phase 1.
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A.2.1. Dynamics of solution. Starting from the optimality condition for C, eq. (17), we time

differentiate both sides to obtain an equation of motion for consumption:

U ′′(C)Ċ = ϕXG
′(X)Ẋ + ϕ̇XG(X)

= ϕXG(X)

{
ϵG

Ẋ

X
+

ϕ̇X

ϕX

}
. (A.21)

Using A3, eq. (A.21) then implies

Ċ

C
= −1

θ

{
ϵG

Ẋ

X
+

ϕ̇X

ϕX

}
.

which is eq. (??) in the text. In light of eq. (19), we observe that this expression can be

rewritten as

Ċ

C
= −1

θ
{ρ+ δ0(1− ϵG)−GF ′} . (A.22)

These dynamics apply whether we are in the phase where both oil and solar are used (phase

1), or only solar is used (phase 2). For consumption – and hence utility – to grow all along

the path from X0 to X∗, the term inside the brackets on the right-hand side of eq. (A.21)

must be negative, implying

G(X)F ′(X)− δ0bX > ρ+ δ0(1− a), ∀X ∈ [X0, X
∗]. (A.23)

We conclude this sub-section by constructing the second-order differential equation in

X that governs the solution. Combining the accounting identity with A3, we obtain an

equation of motion governing X. Recalling that E = X + λS0e
−λt (resp. X) in phase 1

(resp. 2), we have

Ẋ =


G(X)

(
F (E)− C − γ

)
− δ0X in phase 1,

G(X)
(
F (E)− C

)
− δ0X in phase 2.

(A.24)
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Time-differentiating both sides than gives the second-order differential equation

Ẍ =


G′(X)

(
F (E)− C − γ

)
Ẋ + F ′GĖ −GĊ − δ0Ẋ in phase 1,

G′FẊ + F ′GĖ −GĊ − δ0Ẋ in phase 2.

(A.25)

We observe that

Ė =


Ẋ − λ2S0e

−λt in phase 1,

Ẋ in phase 2.

(A.26)

Combining the accounting identity with eq. (A.22) we have

−GĊ =


[
FG− γG− Ẋ − δ0X

][
ρ+ δ0(1− a+ bX)−GF ′] in phase 1,[

FG− Ẋ − δ0X
][
ρ+ δ0(1− a+ bX)−GF ′] in phase 2.

The remaining terms can be synthesized after using (A.24) to substitute for C, and combining

terms; this process yields

G′(X)
(
F (E)− C − γ

)
Ẋ + F ′GĖ − δ0Ẋ =

(
ϵG

GF

X
− δ0

)
Ẋ − λβ

(
E −X

)GF

E

in phase 1, and

G′(X)
(
F (E)− C

)
Ẋ + F ′GĖ − δ0Ẋ =

(
G′F + δ0(ϵG − 1)

)
Ẋ

in phase 2.

Combining these observations, we obtain a second-order differential equation for X, the

solution to which describes the evolution of our system. That differential equation is

Ẍ −
(
ϵG

GF

X
− δ0

)
Ẋ + λβ

(
E −X

)GF

E

−
[
FG− γλG− Ẋ − δ0X

][
ρ+ δ0(1− a+ bX)−GF ′] = 0 (A.27)
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in phase 1, and

Ẍ −
(
G′F + δ0(ϵG − 1)

)
Ẋ −

[
FG− Ẋ − δ0X

][
ρ+ δ0(1− a+ bX)−GF ′] = 0 (A.28)

in phase 2. The solution to the second-order differential equation governing X is fully

determined by two boundary conditions. In phase 1 these conditions are X(0) = X0, X(T̂ ) =

X̂. Assuming the system converges to a steady state in phase 2, with steady state renewable

capacity level X∗, these boundary conditions for phase are X(T̂ ) = X̂, limT→∞X(T ) = X∗.

A.2.2. Steady state. The next question to be addressed is whether a long-run equilibrium –

i.e., a steady state – exists. Any steady state would obtain in phase 2, and would be defined

by the solution to the following two equations:27

Ẋ = 0;

ϕ̇X = 0.

Define the function:

Ω(X) = G(X)F ′(X) + (ϵG − 1)δ0 − ρ (A.29)

Using eq. (19), noting that E = X in phase 2, and setting Ẋ = 0, the ϕ̇X = 0 condition can

be written as:

Ω(X∗) = 0 ⇔

G(X∗)F ′(X∗) = ρ− δ0(ϵG − 1),

which is eq. (22) in the text. We note that using A1 and eq. (1), X∗ can be implicitly defined

by:

αβ(X∗)a+β−1e−bX∗ − δ0bX
∗ = ρ+ δ0(1− a). (A.30)

27 These two conditions, combined with eq. (??), imply Ċ = 0.
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Using A3, the Ẋ = 0 condition can be written as:

G(X∗)R∗ − δ0X
∗ = 0 ⇔

R∗ = δ0X
∗/G(X∗),

which is eq. (23) in the text. Combining this with the accounting identity, we may describe

the Ẋ = 0 iso-cline by

C(X) = F (X)− δ0
X

G(X)
; (A.31)

the steady state consumption level can then be determined as C∗ = C(X∗):

C∗ = F (X∗)−R∗,

which is eq. (24) in the text. This expression can be expanded as

C∗ = α(X∗)β − δ0X
∗/G(X∗). (A.32)

It is easy to see that C(X) goes to −∞ as X tends to 0 or ∞. Moreover, we may calculate

C ′(X) = F ′ − δ0
G

+
δ0XG′

G2

= F ′ +
δ0
G
(ϵG − 1). (A.33)

We observe that there is a value X̌ > a−1
b

such that C ′(X̌) = 0, with C ′ > (resp., <) 0 as

X < (resp., >) X̌; i.e., C(X) is concave. Combining eqs. (22) and (A.33), we see that

C ′(X∗) = F ′(X∗) +
ρ−G(X∗)F ′(X∗)

G(X∗)
=

ρ

G
> 0.

Accordingly, X∗ < X̌: the steady state lies to the left of the peak in the Ẋ = 0 iso-cline.

We now study the general shape of the phase diagram, including the Ċ = 0 and Ẋ = 0 iso-

clines. These are defined by eqs. (A.30) and (A.31), respectively. Since eq. (A.30) determines

X∗ independent of C, the Ċ = 0 iso-cline is a vertical line at X∗. From the discussion above,
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we know that Ċ > (resp., <) for X < (resp., >) X∗. Referring back to eq. (A.25), it is clear

that Ẋ is decreasing in increasing C, and so Ẋ < (resp., >) 0 at points above (resp., below)

the Ẋ = 0 iso-cline.

Of course, moving away from the Ẋ iso-cline might also influence Ċ. To study the

comparative statics and the dynamics of the system, we linearize around the steady state and

then evaluate the Jacobian matrix associated with eqs. (A.30) and (A.32). When evaluated

at steady-state, the Jacobian Matrix is

M =

∂Ċ/∂C ∂Ċ/∂X

∂Ẋ/∂C ∂Ẋ/∂X

∣∣∣∣∣∣
(C∗,X∗)

=

 0 C∗

θ

(
dG(X∗)F ′(X∗)

dX
− bδ0

)
−G(X∗) ρ

 . (A.34)

The determinant of this matrix is

det(M) =
C∗G(X∗)

θ

(
dG(X∗)F ′(X∗)

dX
− δ0b

)
∝ dG(X∗)F ′(X∗)

dX
− δ0b. (A.35)

As we noted above,
dG(X∗)F ′(X∗)

dX
< 0 for X > a

b
− 1−β

b
.

The characteristic polynomial for this matrix is

θξ2 − ρθξ + C∗G(X∗)ΩX ,

where ΩX = ∂Ċ/∂X|C∗,X∗ , with associated eigenvalues

ξ =
ρ

2
±
√

θ2ρ2 − 4θC∗G(X∗)ΩX

2θ
.

Since ΩX is negative at steady-state, one eigenvalue is positive and the other is negative,

implying the steady-state is saddle-path stable. This impacts phase 1 dynamics, as a smooth

transition to phase 2 implies that some solar capacity has been built prior to switching.
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Appendix B. Technical details of the planner’s problem, variant 2

In this appendix, we provide the technical details for the model in section 4. The approach

we use here is calculus of variations, which is based on a characterization of the integrand in

the optimization problem. Here, that integrand is the discounted difference between utility

and pollution damages; as the latter is a constraint in our application we abstract from it.

To that end, we define

F = e−ρtU(C)

= e−ρtU(F (K,X)−R− I),

where the production function is given byA2 , the utility function is given byA3, R = Ẋ+δ0X
G(X)

(from A4) and I = K̇ + δKK (from eq. (32). Making these substitutions, we obtain

F = e−ρtU

(
αXβK1−β −

(
Ẋ + δ0X

G(X)

)
− (K̇ + δKK)

)
. (B.1)

The solution to this problem is given by the Euler equations, which can be written as

∂F/∂yj =
d

dt
(∂F/∂ẏj)

for state variable yj. In light of eq. (B.1) we have

∂F/∂K = e−ρtU ′(C)

(
α(1− β)χβ − δK

)
, (B.2)

∂F/∂K̇ = −e−ρtU ′(C), (B.3)

∂F/∂X = e−ρtU
′(C)

G(X)

(
αβ(χβ−1G(X) + δ0ϵG

(Ẋ
X

+ 1
)
− δ0

)
, (B.4)

∂F/∂Ẋ = −e−ρtU
′(C)

G(X)
, (B.5)
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where we have used χ = X/K. Accordingly the Euler equations are

−CU ′′(C)

U ′(C)

Ċ

C
= (β − 1)χβ − (ρ+ δK) for K, and (B.6)

−CU ′′(C)

U ′(C)

Ċ

C
= αβχβ−1G(X) +

(
δ0ϵG − 1

)(Ẋ
X

+ 1
)
− ρ for X. (B.7)

Noting that −CU ′′(C)
U ′(C)

= θ (from A4) then gives eqs. (34)–(35) in the text.

The time at which society transitions from phase 1 to phase 2 can be determined in an

analogous manner to that used in Appendix A. It must also be true that the state variables

X and K move continuously between the two phases. That is, the starting values for X and

K at the beginning of phase 2 are the terminal values at the end of phase 1.

The steady state of this system is defined by setting the right-hand sides of the Euler

equations equal to zero, while imposing Ẋ = 0:

χ∗ =

(
ρ+ δK
β − 1

) 1
β

; (B.8)

αβ(χ∗)β−1G(X∗)δ0ϵG = 1 + ρ. (B.9)

These two conditions then determine X∗ and K∗. In addition, we note that

R∗ =
δ0X

∗

G(X∗)
,

I∗ = δKK
∗,

C∗ = F (X∗, K∗)− I∗ −R∗.
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Figure 2. Stable paths
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Figure 4. Time paths in “too much oil” case
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Figure 6. Two steady states with the stable paths
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Figure 7. Time paths in two steady states case
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Figure 8. Stable paths, 2 input case
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